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Neurological patients with unilateral neglect fail to orient and respond to stimuli on one side, typically
the left. A key research issue is whether neglect is exhibited with respect to the left side of the viewer
or of objects. When deficits in attentional allocation depend not merely on an object’s location with
respect to the viewer but on the object’s intrinsic extent, shape, or movement, researchers have inferred
that attention must be operating in an object-based frame of reference. Simulations of a view-based
connectionist model of spatial attention prove that this inference is not logically necessary: Object-based
attentional effects can be obtained without object-based frames. The model thus explains away trouble-
some phenomena for view-based theories of object recognition.

A key question motivating research in perception and attention
is how the brain represents visual information. One aspect of this
representation is the reference frame with respect to which visual
features and their relationships are encoded. The reference frame
specifies the center location; the up–down, left–right, and front–
back directions; and the relative scale of each axis. Figure 1 shows
two different reference frames. In terms of the reference frame
centered on the telephone, the buttons would be described as being
on top of the base and in front of the handle, whereas in terms of
the reference frame centered on the viewer, the buttons would be
described as being in back of the base and to the left of the handle.
Reference frames can be prescribed by the viewer, objects, or the
environment. Viewer-based, or egocentric, frames are determined
by the gaze, head orientation, and/or torso position of the viewer.
Object-based, or allocentric, frames are determined by intrinsic
characteristics of an object, such as axes of symmetry or elonga-
tion, or knowledge of the object’s standard orientation.1
Environment-based frames are based on landmarks in the environ-
ment, such as walls in a room, or other absolutes, such as gravity
or compass directions.2 A frame of reference makes certain infor-
mation in the stimulus explicit and therefore readily available for
use in information processing, and it hides other information,
making it less available. Consequently, the appropriateness of one
reference frame or another depends fundamentally on the mecha-
nisms posited to operate in recognizing objects, and assumptions
concerning the psychological and neurobiological reality of vari-
ous reference frames serve to distinguish theories of object
recognition.

Object Recognition

The goal of object recognition is to determine the identity or
category of an object in a visual scene from the retinal input. In
naturalistic scenes, object recognition is a computational challenge
because the object may appear in various poses and contexts—that
is, in arbitrary positions, orientations, and distances with respect to
the viewer and to other objects. Consequently, theories of object
recognition must overcome the effect of viewpoint on the appear-
ance of an object. Viewpoint-invariant recognition, also known as
object constancy, is achieved when an object is identified as being
the same regardless of its pose.
Object recognition involves matching representations of objects

stored in memory to representations extracted from the visual
image. The debate in the literature concerns the nature of the
representation extracted from the image. Broadly, theories of ob-
ject recognition might be contrasted along five logically indepen-
dent dimensions (Hummel, 1994; Hummel & Stankiewicz, 1998;
Tarr, 1999; Tarr & Bülthoff, 1998):
1. What are the primitive features or parts extracted from the

visual image that form the basis of the representation? Features
proposed include generalized cylinders, geons (viewpoint-
invariant shape primitives, discussed below), local surface patches,
contours, and conjunctions of edge segments.
2. How stable is the extracted set of features across transfor-

mations of the image? If processing that underlies feature extrac-

1 The term object based can become confusing, because the object on
which a frame of reference is based can also be a feature or part of an
object. For this reason, I prefer the terms egocentric and allocentric to refer
to frames that might otherwise be called viewer based and object based. In
common usage, allocentric can refer to any frame that is not viewer based,
but in this article, I use it to describe a frame of reference prescribed by
intrinsic properties of the stimulus.
2 Alternative terminology for viewer-based, object-based, and

environment-based reference frames abounds in the literature. Retinotopic,
head centered, and body centered are specific instances of viewer based;
stimulus based is equivalent to object based; and gravitational and scene
based are instances of environment based.
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tion produces descriptions of features in an egocentric frame of
reference, the set of features obtained will be quite different for
two different views of the same object. If processing produces
descriptions of features in an allocentric frame of reference, the
individual features will be the same regardless of the relationship
of the feature to the viewer. The set of features extracted will be
viewpoint dependent in the first case and largely viewpoint invari-
ant in the second. If features are described in a frame of reference
that is allocentric in some respects (e.g., center position and
principal axis of the feature) but egocentric in other respects (e.g.,
left–right and up–down directions), partial viewpoint invariance
will be achieved.
3. How is the configuration of the features encoded? The pose

of each feature might be represented with respect to a single frame
of reference, or the pose of one feature might be specified relative
to the pose(s) of other feature(s).
4. How stable is the representation of a configuration of fea-

tures across transformations of the image? The configuration
might be represented with respect to an egocentric frame, the
resulting representation being highly viewpoint dependent; the
configuration might be represented with respect to an allocentric
frame, the resulting representation being viewpoint invariant;
or—as described above—a hybrid egocentric–allocentric frame
may be used.
5. What relationships are used to describe the possible config-

urations? The relationships might range from qualitative (e.g.,
above) to quantitative (e.g., 1.5 units along the z-axis), with inter-
mediate possibilities (e.g., between 2 and 5 units along the z-axis).
Although theories of object recognition differ in many other

regards, these five dimensions have been the primary focus of
theoretical debates and behavioral studies. When various theories
of object recognition are situated in a space characterized by these
five dimensions, contrasts among theories become explicit and
clear-cut. Because the five dimensions are fairly independent of
one another, it is possible to perform an efficient evaluation over
the space of possibilities by considering one or two dimensions at
a time.
Traditionally, theories of object recognition have often been

divided into two broad classes, view-based theories and structural-
description theories (Hummel & Stankiewicz, 1998; Tarr, 1999).

The key assumption of view-based theories is that the features
extracted from the image are viewpoint dependent (Dimension 2)
and that configurations of features encoded are also viewpoint
dependent (Dimension 4). The key assumption of structural-
description theories is that the pose of each feature is represented
with respect to other features, not to a global frame of reference
(Dimension 3). Because the central assumptions of the two classes
focus on different dimensions, the classes are not necessarily
incompatible. Historically, however, they have been viewed as
antagonistic, in part because of the comparison of specific theories
of each class, which make particular assumptions along all five
dimensions. I describe several influential theories of each class and
then return to the issue of how these theories differ with regard to
the frames of reference posited to operate in object recognition.
An early structural-description theory of object recognition was

outlined by Marr and Nishihara (1978; see also Marr, 1982;
Pinker, 1984). According to this theory, an internal description of
an object’s structure is constructed from observed visual features,
essentially by transforming the viewer-based retinal input into an
object-based representation (see Figure 2a)—a representation of
the relationship of object parts to one another, independent of the
viewer, using allocentric frames of reference for both the parts and
configurations. This transformation solves the problem of
viewpoint-invariant recognition, because every view of an object
maps to the same object-based representation (ignoring the issue of
occluded features).
Since Marr and Nishihara’s (1978) seminal work, a variety of

structural-description theories have been proposed. Some focus on
rigid and two-dimensional objects—either implicitly or explic-
itly—in which case the object-based representation can be con-
structed using only image-plane transformations and recognition
can be achieved in a straightforward manner by matching the
object-based representation to stored templates of familiar objects

Figure 1. Two reference frames that can describe the telephone, one of
which is intrinsic to the object and the other of which is based on the
viewer’s gaze. The reference frame prescribes the center location; the
up–down, left–right, and front–back directions; and the scale of each axis
(indicated by the mark along each axis).

Figure 2. A sketch of two different approaches to achieving viewpoint-
invariant object recognition. (a) In the structural-description theory of Marr
(1982), visual features in the retinal image corresponding to an object (the
sunglasses) are detected and transformed into a view-invariant representa-
tion that captures the three-dimensional structure of the object and the
relationships of its parts to one another. Recognition is then performed by
matching stored object templates—one per object—to the view-invariant
representation. (b) In a neurobiologically motivated view-based theory,
many transformations of the features in the visual input are considered in
parallel, and typically recognition is achieved by means of a multistage
hierarchical process that constructs increasingly complex featural repre-
sentations with increasing viewpoint invariance. The pyramid structure
indicates the transformation from low-order to high-order features while
simultaneously factoring out some position, scale, and possibly orientation
specificity. Recognition is performed by matching the representation at the
top of the pyramid to stored object templates, where multiple templates of
the same object are required to achieve complete viewpoint invariance.
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(Hinton, 1981; Humphreys & Heinke, 1998; Olshausen, Anderson,
& van Essen, 1993; Zemel, Mozer, & Hinton, 1988).
Other structural-description theories in psychology tackle the

task of recognizing the sorts of objects encountered in the real
world—complex, articulated objects with three-dimensional struc-
ture (Biederman, 1987; Hummel & Biederman, 1992; Hummel &
Stankiewicz, 1996, 1998). In the style of Marr and Nishihara
(1978), these theories operate on structural descriptions that de-
compose an object into its parts. Structural descriptions can be
hierarchical, decomposing parts into parts of parts. The parts are
described in terms of a relatively small catalog of primitives. Parts
are linked by a small vocabulary of spatial relationships that
describe how one part is situated with respect to another.
For example, the influential Biederman (1987) theory in-

vokes 36 primitives, called geons. Geons are detected by nonac-
cidental properties in an image. The attributes of a geon include
whether its edges are straight or curved; whether its size is con-
stant, expanded, or contracted; and whether it is symmetric about
one or more axes. The relationships among geons are captured by
qualitative properties such as whether one geon is larger than
another; whether one geon is above, below, or to the side of
another; and whether the geons are joined end to end or end to side.
Because in principle any shape can be described by the finite set of
primitives and relationships, the Biederman theory allows for the
representation of novel shapes. Geons and their relationships can
be represented by a graph structure, and recognition of an un-
known shape can be performed by matching the structure of the
unknown shape to the structure of a stored object.
Hummel and Biederman (1992), Hummel (1994), and Hummel

and Stankiewicz (1996, 1998) have proposed structural-descrip-
tion theories that differ from the Biederman (1987) theory along
certain dimensions. All have proposed frames of reference for
describing features and their configurations that are at least par-
tially egocentric. In addition, the model of Hummel and Stank-
iewicz (1998) can accommodate quantitative as well as qualitative
spatial relationships.
Turning now to view-based theories, consider a naive scheme in

which two-dimensional images of viewed objects are stored during
learning, and these stored templates are matched pixel by pixel to
an image containing an object to be recognized. Although this
scheme seems hopelessly simplistic, minor variants of the scheme
achieve a surprising degree of generalization to novel poses of
three-dimensional objects by interpolation between stored poses
(Beymer, 1993; Poggio & Edelman, 1990; Poggio & Shelton,
1999; Seibert & Waxman, 1990; Ullman, 1989; Weinshall, Edel-
man, & Bülthoff, 1990). In view-based theories, viewpoint-
invariant recognition is achieved by means of multiple character-
istic poses being stored in memory (Perrett, Oram, Hietanen, &
Benson, 1999).
View-based theories that focus on explaining human vision go

beyond the simple two-dimensional template-matching idea by
taking into account the coarse-scale anatomy of visual cortex
(Fukushima & Miyake, 1982; Hubel & Wiesel, 1979; Le Cun et
al., 1989; Mozer, 1991; Perrett & Oram, 1998; Reisenhuber &
Poggio, 1999; Sandon & Uhr, 1988; Wallis & Rolls, 1997). Spe-
cifically, two properties of visual cortex are generally deemed
relevant. First, visual cortex is hierarchically organized, with sim-
ple, low-order, view-specific feature detectors at the earliest stage
of vision, and increasingly complex, higher order, and view-

invariant detectors at subsequent stages (depicted in Figure 2b by
the pyramid structure). Second, information is processed from
many locations in the visual field simultaneously and at many
scales and orientations. Rather than being forced to choose a single
reference frame, parallelism of the visual system allows multiple
transformations of detectors at each stage in the hierarchy. In this
framework, the focus of processing is on extracting features that
reliably indicate the presence of an object, not on constructing a
view-invariant representation. Nonetheless, a partially view-
invariant representation may come to dominate later stages of
processing in the service of recognition.
The issue of reference frames in theories of object recognition

plays out in two ways. First, view-based theories make the strong
claim that objects are encoded in a view-dependent manner at all
stages of recognition (see Figure 2b), and thus features and their
configurations are encoded with respect to egocentric frames.
Second, several classic structural-description theories (Biederman,
1987; Marr, 1982) suppose a stage of processing at which objects
achieve a view-invariant representation (Figure 2a), and thus fea-
tures and their configurations are encoded with respect to allocen-
tric frames. Although other theories lie somewhere between these
extremes (e.g., Hummel & Stankiewicz, 1998), the viability of
many theories of object recognition depends on the frames of
reference used by the brain to encode features and their configu-
rations: The existence of allocentric frames would be debilitating
for view-based theories on grounds of parsimony, and the failure
to find allocentric frames would be troublesome for theories that
posit such representations are necessary for object recognition
(Biederman, 1987; Marr, 1982).

Evidence for View-Invariant Representations

In recent years, there has been a continuing heated debate
between proponents of view-based and structural-description the-
ories (Biederman & Gerhardstein, 1995; Biederman & Kalocsai,
1997; Edelman, 1997; Edelman & Duvdevani-Bar, 1997; Perrett et
al., 1999; Tarr, 1999; Tarr & Bülthoff, 1995), a significant com-
ponent of which has been focused on the neurobiological and
psychological reality of view-invariant representations, or equiv-
alently, allocentric frames of reference. I summarize some of the
key evidence that has been fodder for the debate. I sort the
evidence into three categories: neuroscientific, behavioral, and
computational.
Neurophysiological studies have not identified a stage in visual

information processing at which cells fire in a completely view-
invariant manner. Rather, even at the latest purely visual stages of
processing in monkeys, such as Area TE of inferotemporal cortex,
cells remain somewhat sensitive to viewing angle and articulation
poses for objects, faces, and geometrical shapes (Logothetis &
Pauls, 1995; Perrett & Oram, 1998; Tanaka, 1993, 1996). Indeed,
for faces, cells are tuned to characteristic views, consistent with
view-based theories (Perrett et al., 1999).
The behavioral evidence concerning the viewpoint invariance of

object representations and recognition performance is somewhat
more ambiguous. For example, Ellis, Allport, Humphreys, and
Collis (1989) asked subjects whether two pictured objects had the
same name. A benefit was found if the two familiar objects were
the same, even from different viewpoints, suggesting the use of
allocentric representations. However, a benefit was also found if
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the objects were presented from the same viewing angle and were
of the same size.
Psychophysical support has been found for view-specific object

representations (Tarr, 1995; Vetter, Hurlbert, & Poggio, 1995), as
well as for theories positing multiple specific views with interpo-
lation between (Bülthoff & Edelman, 1992; Edelman & Bülthoff,
1992). Tarr and Pinker (1990; see also McMullen & Farah, 1991)
observed the use of object-based frames only in special cases of
recognition but suggested that the ordinary visual reference frame
is tied to egocentric coordinates.
In studies using novel, compositional objects, viewpoint-

invariant recognition is achieved for rotation in depth (Biederman
& Bar, 1999; Biederman & Gerhardstein, 1993; see further dis-
cussion by Biederman & Gerhardstein, 1995; Tarr & Bülthoff,
1995). Some studies have shown that perception of unfamiliar
three-dimensional objects is aided by prior exposure to objects at
a particular viewpoint and is disrupted by rotation in depth
(Bülthoff, Edelman, & Tarr, 1995), but such data may not be
evidence against allocentric representations, as even Biederman’s
(1987) theory does not predict invariance for all objects and views.
Recently, however, costs in recognition time and accuracy have
been found for viewpoint changes in recognizing single geons of
the sort postulated by Biederman’s theory (Tarr, Williams, Hay-
ward, & Gauthier, 1998).
Complementing the evidence for and against view-invariant

representations from experimental studies are arguments about the
computational complexity and feasibility of object recognition
under the two different classes of theories. A major issue faced by
view-based theories is explaining how they can generalize to novel
objects and novel viewing conditions (Tarr, 1999; but see Reisen-
huber & Poggio, 1999, for a promising model in this regard) and
how they can be used to achieve broad category-level judgments
(Hummel & Stankiewicz, 1996). Alternative theories, in turn, must
be computationally sufficient to extract three-dimensional struc-
ture from images in a primarily bottom-up fashion, which has
proven difficult to achieve.3
The neurobiological, psychological, and computational evi-

dence summarized above is mixed but somewhat favors the notion
that cortical representations involved in ordinary object recogni-
tion are view dependent and, thus, that egocentric reference frames
form the basis of perception. However, there exists another rich
source of data diagnostic of the neurobiological and psychological
reality of allocentric frames of reference, originating in the neu-
ropsychological literature on the study of patients with unilateral
neglect. The interest in neglect has been intense, in large part
because neglect appears to provide compelling support for the
existence of object-based frames of reference. The data seem
particularly clear because stimuli studied have involved rigid two-
dimensional objects, stripping away much of the complexity in-
volved in object recognition, allowing a view-invariant represen-
tation to be established via a single object-based frame of
reference. In the following section, I describe neglect and its
relation to theories of object recognition.

Unilateral Neglect

Damage to parietal cortex can cause patients to fail to orient
toward, explore, and respond to stimuli on the contralesional side
of space (Farah, 1990; Heilman, Watson, & Valenstein, 1993).

This disorder, known as unilateral neglect, can compromise visual,
auditory, tactile, and olfactory modalities and may involve per-
sonal, extrapersonal, and imaginal space (Halligan & Marshall,
1993). Unilateral neglect is more frequent, longer lasting, and
more severe following lesions to the right hemisphere than to the
left. Consequently, all descriptions in this article refer to right-
hemisphere damage and neglect of stimuli on the left. There is one
key question surrounding unilateral visual neglect: With respect to
what reference frame is left neglect manifested?
In ordinary viewing situations, viewer-based and object-based

frames of reference are often confounded as when viewers, seated
upright, fixate on an upright object immediately in front of them.
Consequently, clever behavioral experiments have been designed
to dissociate various reference frames and determine the contribu-
tion of each to neglect. In multiple experiments, patients show a
deficit in attentional allocation that depends not merely on the
location of an object with respect to the viewer, but on the extent,
shape, or movement of the object itself. From this finding of
object-based neglect, the inference is often made that attentional
allocation must be operating in an object-based frame of reference
and, consequently, that object-based frames of reference are cen-
tral to visual information processing. The observation of object-
based neglect suggests the existence of view-invariant representa-
tions and therefore is antagonistic to view-based theories and
supportive of the theories of Biederman (1987) and Marr (1982).
The point of this work is to show that this inference is not

logically necessary: Object-based attentional effects can be ob-
tained without object-based reference frames. Consequently, the
bulk of the neglect data that has been mustered as strong support
for theories of object recognition such as Biederman’s (1987) and
Marr’s (1982) is equally consistent with view-based theories. I
argue this point by means of a computational model that makes use
of only viewer-based frames yet can account for data from a broad
variety of experimental studies that were interpreted as supporting
object-based frames. Through simulations of the computational
model, it becomes evident that the data are trickier to interpret than
one might at first imagine.
In the next section, I present the model and explain key princi-

ples of the model that, as described below, allow it to account for
data. Then, I show simulation results for several different studies.
I conclude with a discussion of other data in the literature that have
been used as evidence for and against the neurobiological reality of
object-based frames.

A Connectionist Model of Visual
Perception and Attention

MORSEL (Mozer, 1991; Mozer & Sitton, 1998) is a connec-
tionist model of multiple object recognition and attentional selec-
tion. The model has previously been used to explain a large corpus
of experimental data, including perceptual errors that arise when
several shapes appear simultaneously in the visual field, facilita-

3 Interactive approaches in which object-based representations and ob-
ject identity are determined in parallel through a constraint satisfaction
search (e.g., Humphreys & Heinke, 1998) have proven difficult to scale up,
because of the massive combinatorial search that has many local optima
(Hinton & Lang, 1985; O’Reilly, Munakata, & McClelland, 2000, chapter 6).
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tory effects of context and redundant information, visual search
performance, attentional cuing effects, reading deficits in neglect
dyslexia (Mozer & Behrmann, 1992), and line bisection perfor-
mance in neglect (Mozer, Halligan, & Marshall, 1997). MORSEL
(see Figure 3) includes a recognition network that can identify
multiple shapes in parallel and in arbitrary locations of the visual
field but has capacity limitations. It is a view-based theory of the
sort depicted in Figure 2b. MORSEL also includes an attentional
mechanism, or AM for short, that determines where in the visual
field to focus processing resources.
Visual input presented to MORSEL is encoded by a set of

feature detectors arrayed on a topographic map. The detectors are
of five primitive feature types: oriented line segments at 0°, 45°,
90°, and 135° and line-segment terminators (ends of line seg-
ments). Figure 4 shows a sample input to MORSEL, four letters
centered on corners of a square, where the representation of each
letter occupies a 3 ! 3 region of the topographic map. The upper
panel presents the superimposed features, and the bottom panels
separate the topographic map by feature type. In these separate
maps, a dark symbol indicates activity of the detector for the given

feature at the particular location, and a light symbol indicates
inactivity. Activity from the topographic map innervates both the
recognition network and the AM.
In my earlier modeling work, I stipulated that the topographic

map is in a viewer-based reference frame, meaning that the input
representation changes as the viewer moves through the world.
However, this earlier work did not require a commitment as to the
precise nature of the viewer-based frame, whether it be retinotopic,
head centered, or body centered. Because the experimental para-
digms that were simulated in this work confound eye, head, and
body position, the various viewer-based frames are equivalent, and
no specific commitment is required now either.
MORSEL is primarily a model of psychological structures, not

neurobiological structures. One might treat MORSEL’s primitive
visual features as corresponding to primary visual cortex, the AM
as corresponding to parietal cortex, and the recognition network as
being situated in the temporal pathway. Beyond this loose fit to
neurobiology, I do not commit to a neurobiological instantiation at
present. I instead treat MORSEL as a psychological-level theory
which describes functional processing in neocortex. Consequently,
I characterize processing units in the model in terms of their
functional properties, not neurobiology. For example, the left
visual field is represented by units on the left side of the primitive
feature maps, even though those units would correspond to V1
neurons in the right cerebral hemisphere.
MORSEL is also not intended as a model of human develop-

ment. The recognition network is trained to reproduce adult com-
petence, but MORSEL makes no claims as to the nature of devel-
opmental processes that give rise to adult competence in visual
perception. The connectivity of the AM is determined by princi-
ples described in the next section. The connectivity is fixed in all
simulations; connectionist learning procedures are not involved.
MORSEL is a comprehensive model consisting of not only the

recognition network and AM depicted in Figure 3 but several other
elements that were sidestepped because of their irrelevance to the
present work. Simulating the entire model can be a problem,

Figure 3. Key components of MORSEL, a model of multiple object
recognition and attentional selection (Mozer, 1991). MORSEL includes a
recognition network, the first stages of which are depicted on the right, and
an attentional mechanism.

Figure 4. Top: Sample input to MORSEL, consisting of the letters A, C, D, and X, encoded in terms of five
primitive features—line segments at four orientations and segment terminators (circles). Bottom: Feature map
activity corresponding to the sample input. A dark symbol indicates the activity of the detector for a particular
feature in a particular location; a faint symbol indicates inactivity.
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because it is difficult to identify which components or properties of
the model are responsible for producing a certain behavior. Con-
sequently, my strategy has been to simulate only the critical
components of the model and to make simple assumptions con-
cerning the operation of other components. I adopted this strategy
in the present work and used only the AM to account for data from
unilateral neglect, much as was done in Mozer et al. (1997).

The AM

The AM is a set of processing units in one-to-one correspon-
dence with the locations in the topographic map. Activity in an
AM unit indicates the salience of the corresponding location and
serves to gate the flow of activity from feature detectors at that
location in the topographic map into the recognition network
(indicated in Figure 3 by the connections from the AM into the
recognition network); the more active an AM unit is, the more
likely that features in the corresponding location of the topo-
graphic map will be detected and analyzed by the recognition
network. However, the AM serves only to bias processing: Fea-
tures from unattended locations are not absolutely inhibited but

have a lower probability of being detected by the recognition
network.
Each unit in the AM receives bottom-up, or exogenous, input

from the detectors in the corresponding location of the topographic
map (indicated in Figure 3 by the connections from the primitive
features to the AM). Each unit in the AM can also receive top-
down, or endogenous, input from higher centers in the model, but
this aspect of the model is barely used in the present research.
Given the exogenous and endogenous input, cooperative and com-
petitive dynamics within the AM cause a subset of locations to be
activated.
Figure 5 shows an example of the AM in operation. Each panel

depicts the state of the AM after various numbers of processing
time steps, or iterations, assuming a 15! 15 topographic map. The
area of a black square is proportional to the exogenous input at that
location in the topographic map. The area of a white square is
proportional to the AM activity. The white squares are superim-
posed on top of the black; consequently, the exogenous input is not
visible at locations with AM activity. Initially, at Iteration 0, the
AM is reset and has no activity. Three distinct blobs of feature
activity are evident on the input, but as processing proceeds, the

Figure 5. Example of the operation of the attentional mechanism (AM). Each panel depicts the state of the AM
at a particular processing iteration, assuming a 15 ! 15 topographic map. The area of a black square is
proportional to the exogenous input at that location in the topographic map. The area of a white square is
proportional to the AM activity. The white squares are superimposed on top of the black; consequently, the
exogenous input is not visible at locations with AM activity. The exogenous input pattern indicates three objects.
The largest one, producing the strongest input, is in the upper left portion of the field. By iteration 20, the AM
has reached equilibrium and has selected the region surrounding the largest object.
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AM selects the largest blob. Note that the input blobs do not
indicate the type or precise arrangement of features, just the total
activity in a region. Although the model appears to have formed a
spotlight of attention, the dynamics of the model do not mandate
the selection of a convex region, or even a single region. Typically,
however, a single region is selected, and the selected region
conforms to the shape of objects in the visual input, tapering off at
object boundaries. Under certain circumstances, the model can
select multiple regions as one of the simulations below
demonstrates.
The operation of the AM is based on three principles concerning

the allocation of spatial attention, which most would view as
noncontroversial: (a) Attention is directed to locations in the visual
field where objects appear, as well as to other task-relevant loca-
tions; (b) attention is directed to contiguous regions of the visual
field; and (c) attention has a selective function—it should choose
some regions of the visual field over others. These abstract prin-
ciples concerning the direction of attention can be incorporated
into a computational model such as the AM by translating them
into rules of activation, such as the following:
1. Locations containing visual features should be activated.

This rule provides a bias on unit activity (i.e., all else being equal,
the principle indicates whether a unit should be on or off). One can
see this rule at work in Figure 5, where the initial activity of the
AM (upper-middle frame) is based on the exogenous input (upper
left frame).
2. Locations adjacent to activated locations should also be

activated. This rule results in cooperation between neighboring
units and is manifested in Figure 5 by the increase in activity over
time for the blob in the upper-left portion of the field.
3. Locations whose activity is the weakest should be sup-

pressed. This rule results in competition between units and is
manifested in Figure 5 by the decrease in activity for the two lower
blobs once the upper left blob begins to dominate in activity.
These three rules qualitatively describe the operation of the

model. The model can be characterized quantitatively through an
update equation, which expresses the activity of a processing unit
in the AM as a function of the input to the AM and the activities
of other AM units. If we denote the activity of an AM unit at
location (x, y) in the topographic map at a particular time t by
axy(t), then its new activity at the following time step is expressed
as

axy"t ! 1# " f ! axy"t# ! exoxy ! # "
i,j!

NEIGHxy

$aij"t# $ axy"t#]

$ %$a!"t# $ axy"t#%# , (1)

where exoxy is the exogenous input to the AM from features in the
topographic map at location (x, y); f is a linear threshold function
that caps activity at 0 and 1,

f"z# " $ 0 if z & 0
z if 0 ' z ' 1
1 if z ( 1

;

and NEIGHxy is the set of eight locations adjacent to (x, y). The
first term on the right side of Equation 1, axy(t), causes a unit to
sustain its activity over time. The second term, exoxy, implements

the bias rule. The third term implements the cooperation rule by
causing an increase in activity when a unit is less active than its
neighbors. Because it also causes a decrease in activity when a unit
is more active than its neighbors, the third term can be viewed as
encouraging a unit to take on the average value of its neighbors.
Finally, the fourth term in Equation 1 implements the competition
rule by causing a decrease in activity when a unit is less active than
a!(t), a measure of the average activity of AM, defined below. The
parameters # and % are positive and weight the contribution to the
activation dynamics of the cooperation and competition rules,
respectively.
The most natural mechanism to perform selection is a winner-

take-all competition rule, rather than the comparison-to-average
competition rule I propose. Indeed, nearly every other connection-
ist model of attention uses a winner-take-all rule. A winner-take-all
rule involves inhibition of a fixed magnitude between each pair of
locations. With a winner-take-all rule, the total inhibition in the
network rises and falls with the total activity in the network.
Through this simple negative feedback loop, the network achieves
homeostasis at a fixed level of activity, that is, a distribution of
attention of roughly fixed area. Because the size of the attentional
spotlight has been shown to vary with task demands and stimulus
properties (e.g., Halligan & Marshall, 1994; Hillis, Mordkoff, &
Caramazza, 1999; LaBerge, 1983), the comparison-to-average
competition rule, which allows both small and large distributions
of attention, was devised. If a region of the AM map has uniform
activity, the comparison-to-average competition rule will support
that level of activity, regardless of the size of the region. What
matters is the homogeneity of activation within a region and the
activation of one region relative to another. If units in one region
have more initial support than units in another region, and the
support within a region is homogeneous, the competition rule will
cause one region to be selected over the other. Contrary to the
standard conception of a spotlight of attention, the comparison-to-
average competition rule will allow two regions to be simulta-
neously active if they have nearly identical support, a property I
later make use of to explain data.
The computation of the average activity, a! , requires some ad-

ditional explanation. The fourth term in Equation 1 causes a unit’s
activity to be inhibited in proportion to a! . If a! were simply the
mean activity level of all AM units—that is,

a! "t# "
1
n "

x,y

axy,

where n is the number of units in the AM—the level of inhibition
would rise or fall as the total activity rises or falls, driving the total
activity to remain roughly constant; consequently, the AM would
tend to select a fixed-size region. The AM should be capable of
attending to small or large regions, depending on the stimulus and
task environment. This property was achieved by modulating the
inhibition between each pair of units by the number of active units,
instead of having what amounts to fixed inhibition between units.
That is, a! is defined as the mean activation considering only the
active units, computed by replacing n with nACT, the number of
active units:

nACT " lim
)30

"
x,y

axy
) ! axy

.
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As ) approaches zero, nACT becomes simply the number of units
with positive activity levels.
In the original model, it turned out that to control the behavior

of the AM, an additional depreciation factor, *, was needed in the
definition of a!:

a! "t# "
*

nACT "x,y axy,
where 0& * ' 1. If * ' 1, a unit must have an activity level above
the mean to remain on, but if * & 1, the mean is depreciated and
units whose activity is slightly below the mean will not be
suppressed.
To grasp the activation function intuitively, consider the time

course of activation as depicted in Figure 5. Initially, the activity
of all AM units is reset to zero. When a stimulus display is
presented, features are activated in the topographic map, which
provides exogenous input to the AM (the second term in Equation
1). Units with active neighbors will grow the fastest because of
neighborhood support (the third term). As the flow of activation
progresses, high-support neighborhoods will have activity above
the mean and they will therefore be pushed even higher, whereas
low-support neighborhoods will experience the opposite tendency
(the fourth term).

Lesioning the AM to Produce Neglect

In modeling data from neglect dyslexia (Mozer & Behrmann,
1992) and line bisection (Mozer et al., 1997), we proposed a
particular form of lesion to the model—damaging the connections
from the primitive feature maps to the AM. The damage is graded
monotonically; it is most severe at the left extreme of the topo-
graphic map and least severe at the right (assuming a right-
hemisphere lesion as I do throughout this article). Figure 6 depicts
the damaged connections into the AM. The graded damage is
important, because it results in a relative preference for the right;
complete destruction of the connections in the left field and fully
intact connections in the right field would yield a qualitatively
different sort of behavior. The graded damage proposed is moti-
vated by Kinsbourne’s (1987, 1993) orientational bias account of
neglect.
The damage is described in functional terms—that is, how the

damage affects the operation of the model. The model is neutral
with regard to the neurobiological basis of this damage—that is,
how a unilateral brain lesion results in damage of this functional

form. Additional assumptions will be required to specify the model
at a neurobiological level. Other psychological-level theories of
neglect face the same challenge. The neurobiological-level theory
of Pouget and Sejnowski (1997) suggests that the gradient of
attention following a unilateral brain lesion arises by way of
gradients of representation in intact parietal cortex: The left hemi-
sphere has a weak representation of the left side of space and a
strong representation of the right side, and the right hemisphere is
the mirror opposite. Consequently, damage to the right hemisphere
leaves only the left hemisphere representation, which has a weak-
to-strong gradient of representation from left to right. Note that
even this neurobiological model makes an assumption of a gradi-
ent, although it is a gradient in the intact model, not a gradient
resulting from damage. Such a gradient could easily be incorpo-
rated into the AM by splitting the model into two copies localized
in the left and right parietal cortices. Each copy operates autono-
mously with weak cross-connections to keep the two networks
synchronized. The input to the left-hemisphere AM from the
primitive feature maps would be weak to strong from left to right.
The input to the right-hemisphere AM would be reversed: strong to
weak from left to right. Damage to the right hemisphere would
leave only the left-hemisphere AM, which has the input gradient
Mozer and Behrmann (1992) proposed to model neglect. A more
elegant account may be feasible: Shillcock and Cairns (1995)
presented a simple connectionist model in which a gradient of
damage emerges from a hemispheric model in which no represen-
tational gradients are built in.
Mozer and Behrmann’s (1992) proposal for a graded lesion of

the inputs to the AM can be contrasted with two alternatives. First,
one might damage the visual recognition network itself. However,
this would lead to blindness and is inconsistent with the view of
neglect as an attentional phenomenon and with the neuroanatomi-
cal lesion sites that give rise to neglect. Second, one might lesion
the AM directly, changing either the activation dynamics or the
connectivity of the units such that damaged units integrate activity
more slowly or have a weakened influence on the activity of other
units. I conjecture that these types of lesions would yield a behav-
ioral effect similar to the proposed lesion for the simulation studies
reported in this article.
The damage depicted in Figure 6 affects the probability that

primitive visual features are detected by the AM. To the extent that
features in a given location fail to trigger attention, the AM will
fail to focus attention at that location. Thus, the deficit is not
“perceptual,” in the sense that if somehow attention can be mus-
tered, features will be analyzed normally by the recognition net-
work. For example, the lesioned AM shows extinction: When a
single stimulus is presented, it will be attended and recognized, but
when two stimuli are presented side by side, the left stimulus is
suppressed because of the simultaneous presence of the right
stimulus (Mozer & Behrmann, 1992).
The nature of the attentional deficit is specified by means of a

function relating the horizontal position of a feature on the topo-
graphic map to the probability that the feature will be transmitted
to the corresponding location of the AM (see Figure 7). The
function is piecewise linear with a flat segment, followed by a
segment with positive slope, followed by another flat segment. The
left and right extremes of the curve represent the left and right
edges of the topographic map, respectively. The probability that

Figure 6. A sketch of the attentional mechanism (AM) and some of its
inputs from the primitive feature maps. Each feature detector connects to
the homologous unit in the AM. In neglect, graded damage to these
connections is hypothesized, resulting in feature detectors that are less
effective in activating the AM. The damage is depicted by the fainter
connections toward the left side of the field.
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the AM will register a feature is low in the left field and is
monotonically nondecreasing further to the right.
The function is characterized by four parameters: (a) the mini-

mum transmission probability (anchor probability), (b) the hori-
zontal position in the topographic map at which the probability
begins to rise (anchor position), (c) the slope of the rising segment
(gradient), and (d) the probability of feature transmission on the
right extreme of the topographic map (saturation probability). This
parameterization allows a variety of transmission functions, in-
cluding forms corresponding to individuals with no brain damage
(e.g., a minimum probability close to 1 and a gradient of 0), a
homogeneous slope across the entire field (e.g., a shallow gradient
and a saturation position at the far right edge), and a sharp
discontinuity at the hemifield crossing (a very steep gradient and a
saturation position just to the right of center). Presumably the exact
nature of the function varies from patient to patient. Regardless of
the specific form of damage, I emphasize that the damage is to a
viewer-centered representation of space.

General Simulation Methodology

The AM as described is identical to the model used in our
(Mozer & Behrmann, 1992; Mozer et al., 1997) earlier simulation
studies of neglect. However, the nature of the model’s input was
changed in one minor respect. In the earlier simulation studies,
when a stimulus display was presented to the model, the exoge-
nous input to the AM was determined probabilistically based on
the stimulus display and the transmission-probability function (see
Figure 7). The exogenous input then remained constant as the AM
settled. However, when the display itself is not static—as is the
case in one simulation reported here—the exogenous input cannot
be static. Consequently, in these simulations, I resampled the
stochastic exogenous input at each time step of the simulation.
This resampling had no systematic effect for static displays but
allowed simulation of the AM for dynamic displays.
The AM has three parameters: #, %, and *. In earlier simulations

using the AM, # was fixed at 1⁄8 and % at 1⁄2. These values were
used in the present research as well. The third parameter, *, is
dependent on the amount of activity in the stimulus display. In

earlier simulations, Mozer and Behrmann (1992) devised a for-
mula for setting * based on the total exogenous input to the AM,
exo0, and a metaparameter *( that modulates the fraction of the
locations that provide exogenous input to the AM that should be
selected by the AM:

* " min% 1.00, max! .75, exo0*( #& .
*( was originally conceived as task and stimulus independent, and
earlier simulations of the AM used a constant *(. However, I
discovered in the present work—which covers a much wider
variety of stimulus displays than the previous simulations—that *(
had to be set for each experimental task. It was the only free
parameter of the model and roughly corresponds to the degree of
selectivity required to perform the task. Consequently, the setting
of *( depends on the density and distribution of features in a
display. The adjustment was primarily performed to obtain sensi-
ble behavior from the AM, not to fit simulation data to human data.
The model’s behavior was qualitatively robust to the choice of *(.
However, if *( was too large, the AM would fail to be selective,
and if *( was too small, all activity in the AM would die out. I set
*( to 240 for simulations of Behrmann and Tipper (1994; Tipper &
Behrmann, 1996) and Driver and Halligan (1991), 220 for simu-
lations of Behrmann and Tipper (1999), 110 for simulations of
Arguin and Bub (1993), 650 for simulations of Pavlovskaya,
Glass, Soroker, Blum, and Groswasser (1997), and 70 for simula-
tions of Driver, Baylis, Goodrich, and Rafal (1994). From a
rational analysis perspective (Anderson, 1990), one might think of
*( as an adjustable parameter of the cognitive architecture that is
tuned to optimize performance.
In Mozer et al. (1997), a range of lesions was simulated by

varying the four parameters in the transmission-probability curve.
For the present work, however, I chose a single lesion profile that
had produced typical results in the earlier work. This profile had an
anchor probability of .30 and a saturation probability of .90. The
anchor position was at the left edge of the topographic map, and
the gradient was chosen such that saturation was reached 5⁄6 of the
way to the right edge of the topographic map. For the unlesioned
model, the anchor and saturation probabilities were both .9. All
simulations used a topographic map of dimensions 36! 36, except
for the Arguin and Bub (1993) simulation, which required a
10 ! 61 topographic map to allow for variation in the horizontal
position of the stimuli.4
Simulating an experimental task requires that the experimental

stimuli be mapped to a pattern of exogenous input to the AM. As
in earlier simulations of the AM, the mapping was accomplished
by laying a silhouette of the stimulus over the topographic map and
setting the exogenous input at all locations covered by the silhou-
ette to .10 except along the stimulus contour, where the exogenous
input is raised to .20 to reflect the contrast along the border.
Further, as in the past, I assumed a slight amount of blurring of the
exogenous input: Each stimulus location provided input to not only
the corresponding location of the AM but also the immediately
adjacent locations, with a relative strength of 2%. This very slight

4 I conceived of the larger topographic map as representing the same
visual field region as the smaller map but at a higher resolution.

Figure 7. The transmission-probability curve representing the damage to
the model’s attentional system. This function relates the position of a
feature in the viewer-centered frame to the probability that the feature will
be detected by the corresponding unit of the attentional mechanism (AM).
The function is for a patient with left neglect; the probability that the AM
will register a feature is low in the left field and is monotonically nonde-
creasing further to the right.
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spread is unlikely to affect processing, but I preserved it to main-
tain consistency with the original simulations.
The experimental tasks simulated have as their dependent variable

the response time to detect or identify a target. Rather than running the
full MORSEL model and using the object-recognition network to
determine detection or identification responses, I made a simple
readout assumption that allowed me to perform a simulation using
only the AM. The assumption is that the reaction time to detect or
identify a target is inversely proportional to the attentional activation
in locations that correspond to the target. This assumption is justified
by earlier simulations of MORSEL (Mozer, 1991), in which output
activity of the recognition network was found to be monotonically
related to the allocation of attention to locations of a target. Because
the propagation of activity inMORSEL is temporally extended, I used
not the instantaneous activation of the AM but rather the mean activity
of the AM over the 20 iterations following target onset. The results
described in the following sections are not sensitive to the specific
readout assumptions; results are qualitatively similar if the mean
activity is computed over 10 or 40 iterations instead of 20, or if the
mean activity is mapped to response time by any monotonic trans-
formation. Because trials will vary because of random effects of the
transmission-probability curve, I averaged activation across multiple
trials in each experimental condition.

Simulations

Behrmann and Tipper (1994) and Tipper and
Behrmann (1996)

When an experimental stimulus is presented upright and cen-
tered on the fixation point, viewer-centered and object-centered
reference frames are confounded. To dissociate the two frames,
Behrmann and Tipper (1994) rotated a display containing a “bar-
bell”—two disks, one colored red and the other blue, connected by
a solid bar. The barbell first appeared with, say, the red disk on the
left and the blue disk on the right. It remained stationary for 1 s,
allowing subjects to establish an object-based frame of reference.
In the moving condition, the barbell then rotated 180° (see Fig-
ure 8a) such that the blue disk ended up on the left and the red disk
on the right—the two disks had exchanged places (see Figure 8b).
Following the rotation, the red disk appeared on the left with
respect to the object-based frame, but on the right with respect to
the viewer-based frame. The subjects’ task was to detect a target
appearing on either the red or the blue disk. A static condition, in
which the barbell did not rotate, was used as a baseline (see
Figure 8b). Subjects with left neglect showed facilitation for tar-

gets appearing on the blue disk in the moving condition relative to
the static condition and showed inhibition for targets appearing on
the red disk. Essentially, the laterality of neglect reversed with
reversal of the barbell. Results were therefore consistent with
object-based, not viewer-based, neglect.
Tipper and Behrmann (1996) ruled out an explanation for this

phenomenon in terms of overt tracking by eye movements. They
also showed that the phenomenon appeared to depend on the disks
being encoded as one object: In contrast to the condition depicted
in Figure 8 in which the two disks are connected, when the bar
between the disks is removed—the disconnected condition—the
reversal of neglect no longer occurred when the disks rotated. This
finding is what one would expect if neglect occurred in an object-
based frame, because rotation of the display no longer corresponds
to rotation of a single object.
The moving condition in the AM was simulated by presenting a

horizontal barbell for 50 iterations and then rotating it 180° over
the next 400 iterations, followed immediately by the target. The
static condition was simulated by presenting the horizontal barbell
for 200 iterations, followed immediately by the target. Encoding
the rotating stimulus in a discrete array of cells is complicated
because of quantization effects. I did not attempt to hand design an
exogenous input pattern for the barbell at every angle %; rather, the
exogenous input was automatically generated from the exogenous
input for the horizontal barbell stimulus as follows. For each
location (x, y), a new coordinate (x(, y() was computed by %°
rotation. Because x( and y( are in general noninteger, the exoge-
nous input at (x, y) could not be copied to (x(, y() directly. x( and
y( were not rounded to the nearest integers; rather, the exogenous
input at (x, y) was then split up according to the distance of (x(, y()
to the four integer grid locations surrounding it. This procedure
minimized quantization effects that arose from the coarse repre-
sentation of the topographic map.
As explained earlier, it was assumed that the attentional activity

in a region of space is related to the speed and accuracy of
information processing in that region. In the Behrmann and Tipper
(1994) experiment, the critical regions are those of the two disks.
Readout from the model was performed by calculating the mean
attentional activity directed toward each disk, averaged over all
locations containing features of the disk and over the 20 iterations
following the trial and over 200 trials, referred to as the readout
activity. Greater readout activity for a disk indicates a shorter
response time to the target appearing in that disk.
Figure 9 shows a trial of the unlesioned AM in the moving-

barbell condition. The unlesioned model has a uniform transmis-
sion probability of .90 across the field, producing occasional
missing features in the exogenous input as can be seen in the upper
left panel. As the figure shows, attention is rapidly deployed to the
entire barbell and remains with the barbell as it rotates. This result
is not altogether trivial, as the model had never been tested on
dynamic stimuli. The readout activity was .99 for both the left and
right disks. (With regard to the disks and targets, left and right
refer to viewer-centered locations.) The attentional state before
rotation begins, at Iteration 50, gives a good indication of the
readout activity in the static condition, which was also .99 for left
and right disks. Thus, the unlesioned AM shows no difference in
target detection time among conditions—moving versus static, left
versus right target, and connected versus disconnected disks.

Figure 8. Barbell stimulus used in the Behrmann and Tipper (1994)
experiment. The disk labeled R is colored red, the disk labeled B is colored
blue. In the moving condition, the initial display (a) was rotated 180°,
resulting in the left and right disks’ exchanging places (b). In the static
condition, no rotation occurred (b).
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The lesioned AM shows quite different behavior (see Figure
10). A relative degradation to the exogenous input on the left side
of the barbell can be observed due to the transmission-probability
curve, causing the right half of the barbell to be selected initially.
As the barbell begins to rotate, the focus of attention narrows
further to just the disk, because the disk provides the greatest
amount of exogenous input. As rotation continues, attentional
activity lags slightly behind the exogenous input, because of limits
on the time course of activation transmission, but catches up when
the rotation is completed. Given the final distribution of attention
in the moving condition, the model will be faster to respond to a
target on the left than on the right. This reversal does not occur in

the static condition, as suggested by the AM state at Iteration 50.
The trial depicted in Figure 10 is representative; it is consistent
with the more quantitative measure of readout activity (see Ta-
ble 1, connected condition), which indicates greater activity for the
left disk in the moving versus the static condition, and less activity
for the right disk.
When the disks are disconnected, attention jumps from the disk

that started off on the left to the disk that ends up on the left (see
Figure 11). After the disks cross the midline, the disk rotating into
the right field begins to receive more support from the exogenous
input than the disk rotating into the left field. Eventually this
exogenous support is sufficient to activate the right disk, and

Figure 9. One trial of the unlesioned model on the Behrmann and Tipper (1994) rotating-barbell stimulus.
Attentional activation (white squares) follows the exogenous input (black squares) as the barbell rotates.

Figure 10. One trial of the lesioned model on the Behrmann and Tipper (1994) rotating-barbell stimulus.
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competition acts to suppress the left disk. This pattern is observed
reliably as indicated by the measure of readout activity (see Ta-
ble 1, disconnected condition). The readout activity shows nearly
full activity to the right disk and none to the left disk, and no
difference between moving and static conditions.
In summary, the AM simulation replicated the primary findings

of Behrmann and Tipper (1994; Tipper & Behrmann, 1996): (a)
For individuals with no brain damage, no reliable differences were
obtained across conditions; (b) for patients shown connected disks,
left-sided facilitation and right-sided inhibition were obtained in
the moving condition relative to the static; (c) for patients shown
disconnected disks, left-sided facilitation and right-sided inhibition
were not observed; and (d) for patients, there was a main effect of
target side—left was slower than right.
The model’s ability to replicate the pattern of data was not

obvious without running a simulation, and in fact, its behavior for
disconnected disks was unexpected. Nonetheless, the results
emerged reliably from the simulation. In a situation such as this,
the only recourse is to experiment with the model and determine
what factors influence its behavior, with the goal of eventually
extracting an intuitive explanation for its success.

Many factors did not affect the model’s qualitative performance,
suggesting that the result is robust. The specific design of the
stimuli was unimportant; qualitative performance was robust to the
shape of the disks, the pattern of exogenous input corresponding to
the disks, or the size of the disks relative to the thickness of the bar
(see Figure 12). The connectedness of the two disks was not even
essential to achieve the reversal effect (see the lower-right panel of
Figure 12), an observation to which I return shortly. The model
was robust to other factors, including alternative parameters for the
transmission-probability curve (see Figure 7) as long as a gradient
was present, the rate of rotation of the stimulus, and the readout
formula. In fact, the reversal effect reported for rotating connected
disks could be made even larger by increasing the size of the disks,
reinforcing the exogenous input to the borders of the stimulus,
increasing the rotation time, and/or reading out the asymptotic
activity of the AM.
One factor that necessarily influences the model’s qualitative

performance is the strength of exogenous input corresponding to
the bar. If the bar triggers a very weak exogenous input—for
example, when the input corresponding to the bar is 1 pixel thick
and those pixels are attenuated in strength relative to pixels of the
disks—the exogenous input pattern for connected disks becomes
quite like the pattern for disconnected disks, and the model treats
the connected-disk condition like the disconnected-disk condition.
What this circumstance corresponds to in terms of visual stimuli is
unclear, because the exogenous input to the AM reflects the net
activity of feature detectors, not raw pixels in the image. Even a
thin, faint line in the image could trigger significant activity of
edge detectors, resulting in a substantial exogenous input to the
AM. (Indeed, because cells in visual cortex respond more strongly
to edges than to solid regions, there is no reason to believe that bar
thickness has a significant effect on the pattern of neural activity.)
To understand the simulation results, consider first the moving

connected-disk trials. The model appears to track the right disk
into the left field. Because attentional activity in the model corre-

Table 1
Readout Activity From the Lesioned Attentional Mechanism in
the Experimental Conditions of Tipper and Behrmann (1996)

Condition Left disk Right disk

Connected

Moving .22 .04
Static .00 .99

Disconnected

Moving .00 .93
Static .00 .99

Figure 11. One trial of the lesioned model on the Tipper and Behrmann (1996) rotating disconnected disks.
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sponds to covert attention,5 this tracking is not necessarily overt
and is therefore consistent with the finding of Tipper and Behr-
mann (1996) that eye movements are not critical to the phenom-
enon. Tracking occurs because the attentional state has hysteresis
(e.g., Sperling, 1970): The state at some iteration is a function of
both the exogenous input and the state at the previous iteration.
Attention would not ordinarily be drawn to a disk on the left given
a competing disk on the right because the exogenous input to the
left disk is weaker. Nonetheless, if attention is already focused on
the disk on the left, even a weak exogenous input may be sufficient
to maintain attention on the disk. In terms of the rules of activation
of the model described earlier, the disk that has moved into the left
field has support by means of the bias and cooperation rules,
whereas the disk that has moved into the right field has support
only by means of the bias rule.
However, the winner is not determined simply by the fact that

one disk has the support of the cooperation rule and the other does
not. Key to the model’s behavior is the total quantitative support
provided to each of the disks. If the total support is greater for the
right disk, then attention will flip to the right. This flipping occurs
on disconnected-disk trials. In the model, connectedness per se is
not critical to the flipping of attention: Attention does not flip for
a display in which the bar is broken in the center (see Figure 12,
lower-right panel), which disrupts connectedness. Instead, the
“neck” of the barbell—the region where the disk makes contact
with the bar—seems to be the critical component. The neck pro-
vides a region of exogenous input adjacent to the disk and, by the
cooperation rule, therefore provides a neighborhood that supports
attentional activity. Figure 10 clearly shows that activation is
centered on the neck as the disk rotates into the left field. Without
the neck to “hook” activity in place, activity drops to the point that
the left disk cannot fend off attack from the right disk. Although
this account is not entirely satisfactory, in that I have not explained

the phenomena in linguistically simple, qualitative terms, it is
sometimes the best one can hope for in characterizing the behavior
of a complex, dynamical system such as the AM. The explanation
I have given for the AM’s performance leads to empirical predic-
tions, in particular concerning a stimulus display such as that in the
lower right panel of Figure 12. I return to the issue of predictions
of the model in the Discussion section.
The Behrmann and Tipper (1994; Tipper & Behrmann, 1996)

data seem strongly consistent with the hypothesis that neglect
operates in object-based coordinates. The AM, however, provides
an alternative explanation, because it has no object-based frame of
reference, yet it can account for the data. The AM’s account
involves covert attentional tracking. Without simulations, the
covert-tracking account is not compelling, because it would not
appear to explain the lack of neglect reversal for disconnected
displays. However, despite the absence of object-based represen-
tations, the AM does show a distinction between connected (single
object) and disconnected (multiple object) displays and hence
increases the plausibility of the covert-tracking account.

Behrmann and Tipper (1999)

Recently, Behrmann and Tipper (1999) explored an intriguing
variation of the rotating-barbell experiment in which the display
also contained two elements—squares—that remained stationary
during the trial (see Figure 13). Subjects were asked to detect a
target that could appear either on one of the disks or on one of the
squares. As in the earlier studies, facilitation was observed for

5 Attentional activity corresponds to covert attention by virtue of the fact
that eye movements are not modeled, and the stimuli do not change
position in the visual field as attention shifts.

Figure 12. Exogenous input activity patterns for eight different barbell stimuli. Rotation of all eight versions
achieved a reversal of neglect, suggesting that the model is robust to the exact shape of the barbell. The pattern
in the upper left panel is the one used for all simulations reported in this article and corresponds most closely
to the experimental stimuli used in neuropsychological studies in terms of the size of the disks relative to the
length of the bar.
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targets appearing on the left (blue) disk in the moving condition
relative to the static condition, and inhibition was observed for
targets appearing on the right (red) disk, consistent with neglect in
the object-based frame of the barbell. Simultaneously, however,
neglect was observed in the viewer-based frame for the squares:
Target detection in the left square was slower than in the right
square. The finding of neglect in both viewer- and object-based
reference frames suggests that attention can select and access
information encoded with respect to multiple reference frames.
To simulate this experiment, I made several changes to the

previous simulation. First, the barbell rotated from 30° to 150°,
instead of 0° to 180°. Maintaining the same rotation rate as in the
previous simulation, the rotation took 267 iterations. Second, sta-
tionary squares were added to the display. Third, readout activity
was calculated at the square locations as well as the disk locations.
Figure 14 presents a single trial of the lesioned AM. The model’s
behavior is somewhat surprising: Initially, attention is drawn to the
right side of the display, which includes the right disk and right
square. As the barbell begins to rotate, attention is stretched to
span the disk and the square, but when the disk and square
separate, the attentional blob connecting them is broken into two
blobs. One might expect the smaller blob to be suppressed because
of competition between the blobs, but the competition is weak, for

the following reason. The competition rule causes a location to be
inhibited to the extent that its activity is below the average activity
of all active locations. Because locations in both blobs have
comparable activity—in fact, they are near asymptote at the point
when the blobs split—neither blob is significantly inhibited.
Quantitative measures of readout activity (see Table 2) are

consistent with the example presented in Figure 14 and with the
results of Behrmann and Tipper (1999). Facilitation—increased
activity at the disk location—is observed for the left disk in the
moving relative to the static condition. Inhibition—decreased ac-
tivity at the disk location—is observed for the right disk. And in
both moving and static conditions, facilitation is observed for the
right square relative to the left. Thus, the AM can account for what
appears to be neglect occurring simultaneously in multiple refer-
ence frames, although it encodes visual information in only a
single reference frame, viewer based.
In the experiment just described, the target appeared on the

squares half the time and on the disks half the time. In a second
experiment, Behrmann and Tipper (1999) varied the target contin-
gencies, such that for some subjects, 80% of targets were on the
squares, and for other subjects, 80% of the targets were on the
disks. They observed an accentuation of neglect for the shapes—
disks or squares—that were probed more frequently and inter-
preted this in terms of task demands’ modulating attention, and
hence neglect, within location-based or object-based reference
frames.
These results can also be accommodated within the framework

of the AM. Suppose that the target contingencies modulate the
AM’s likelihood of attending the squares: The more frequently
targets appear on the squares, the more likely locations of the
squares are to draw attention. Because features are transmitted to
the AM in an all-or-none fashion, a sensible way of increasing or
decreasing the likelihood of attention is to modulate the transmis-
sion probability of features of the squares, much the same effect
that I hypothesize neglect has. In the target-more-likely-on-squares
condition, the transmission probability of features at the locations
of the squares is multiplied by 1.2; in the target-more-likely-on-
disks condition, the transmission probability of features at the

Figure 13. The multiple-object display studied by Behrmann and Tipper
(1999). In the moving condition, the initial display (a) consists of two
stationary squares and a barbell, which—as in the earlier studies—rotates
such that its two disks exchange horizontal positions (b). Participants were
asked to detect a target that could appear on either disk or either square. In
the static condition, no rotation occurred (b).

Figure 14. One trial of the lesioned model on the Behrmann and Tipper (1999) barbell–square experiment.
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locations of the squares is multiplied by 0.8.6 Thus, neglect and
target contingencies affect transmission probabilities indepen-
dently. Results for these two conditions, shown in Table 3, clearly
indicate that object-based neglect of the disks is accentuated when
the target is more likely to appear on the disks, and location-based
neglect of the squares is accentuated when the target is more likely
to appear on the squares. Again, the AM suggests that the findings
of Behrmann and Tipper (1999) can be accounted for without
invoking object-based reference frames.
Although the AM replicated the pattern of data of Behrmann

and Tipper (1999), the account is intuitively unsatisfying in one
regard. As Figure 14 shows, the AM’s initial blob of activation
encompasses both the right disk and the right square. The activa-
tion rules giving rise to this blob depend on the spatial proximity
of the two shapes but ignore the fact that the two shapes are
distinct objects. One might view this failure to prevent the spread
of activation across object boundaries as a deficiency of the AM.
A simple repair might be made by increasing the resolution of the
topographic map, resulting in additional locations separating the
two objects and less likelihood of activation spreading from one
object to the other. However, the problem seems more fundamen-
tal: The AM has no embodiment of gestalt grouping principles
such as good continuation, closure, or similarity, but only the
principle of proximity. Such principles can account for object-
based effects in undamaged individuals without requiring object-
based representations (e.g., Behrmann, Zemel, & Mozer, 1998;
Mozer, 1999; Mozer, Zemel, Behrmann, & Williams, 1992;
Vecera & Farah, 1994). The AM might incorporate grouping
principles by using the grouping principles to specify which pairs
of units cooperate and compete (Grossberg, Mingolla, & Ross,
1994; Mozer & Sitton, 1998). For example, the current implemen-
tation of the AM incorporates the principle of proximity via mutual
excitation between adjacent units in the topographic map. The AM
might be extended to include cooperation, say, between two loca-
tions containing the same features or between two locations whose
features form a smooth contour. Essentially, I am proposing to
modulate the connectivity within the AM based on how features in
the display are grouped according to the gestalt principles.
I digressed in order to explain how the AM might be made more

sensitive to object boundaries. Assuming such a modification, the
AM is still able to explain the Behrmann and Tipper (1999) results.
The modified AM, when lesioned, should select either the right
side of the barbell or the right square. If the barbell is selected,
covert attentional tracking should still lead to object-based neglect
for the barbell. If the right square is selected, viewer-based neglect
will be obtained for the squares. The magnitude of object-based
and viewer-based effects will depend on how often one object or
the other is selected, which in turn should be influenced by target
contingencies.

In summary, the AM—whether in its present form or modified
to incorporate gestalt grouping principles—is able to explain the
simultaneous observation of object-based and location-based ef-
fects of neglect in the experimental paradigm studied by Behrmann
and Tipper (1999).

Pavlovskaya et al. (1997)

If object recognition requires that the visual input be encoded in
object-based coordinates, one might expect recognition accuracy
to be impacted if the object-based frame is imposed incorrectly.
Pavlovskaya et al. (1997) studied a task that might seem to affect
the establishment of an object-based frame. They supposed that the
luminance centroid (LC) of a visual shape—the center of mass of
its light distribution—serves as a natural origin for an object-based
frame. They further supposed that a cue prior to the onset of the
shape might serve to bias or shift the origin, which would hamper
recognition. Stimuli were brief, masked, letterlike stimuli preceded
by a location cue. The cue could be at the LC or to its left or right
(see Figure 15). Subjects were instructed to report the stimulus
identity. Subjects with no brain damage performed best if the cue
was at the LC (see Figure 16, upper-left graph), consistent with the
hypothesized role of the cue in biasing the establishment of an
object-based frame. The neglect data (see Figure 16, upper-right
graph) were also consistent with the hypothesis: One might sup-
pose that neglect causes a rightward bias in specifying the origin,
thereby impeding recognition, but that a left cue offsets this bias.
However, the data do not demand an explanation involving

object-based frames or an effect of cues and neglect in establishing
an object-based frame. Figure 16 (bottom row) shows a simulation
of this experiment using the AM. In the simulation, the cue was

6 As mentioned earlier, the AM receives not only exogenous input from
the visual field but also endogenous input from higher brain centers. The
endogenous input allows the AM to be guided in a task-dependent manner.
Adapting to target contingencies is exactly the sort of guidance that higher
centers could provide. In this experiment, because subjects fixated at the
center of the display at the onset of each trial, object locations map to
retinal locations, and top-down guidance can be provided by specifying
likely retinal locations where targets would appear. In the case of displays
that had more variability, it is conceivable that cognitive processing could
map task constraints into biases on retinal locations via simple visual
routines (Ullman, 1984).

Table 2
Readout Activity From the Lesioned Attentional Mechanism for
the Experiment of Behrmann and Tipper (1999)

Condition

Disk Square

Left Right Left Right

Moving .21 .04 .00 .99
Static .00 .90 .00 .91

Table 3
Readout Activity From the Lesioned Attentional Mechanism for
the Experiment of Behrmann and Tipper (1999) Under Different
Target Contingencies

Condition

Disk Square

Left Right Left Right

Target more likely on disks

Moving .21 .02 .00 .78
Static .00 .91 .00 .73

Target more likely on squares

Moving .16 .04 .00 .99
Static .00 .72 .00 .92
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presented for 50 iterations, followed by the stimulus for 20
iterations. Stimuli tested consisted of 100 trials of each of four
different shapes studied by Pavlovskaya et al. (1997)—an H, a
left-pointing T, a right-pointing T, and a horizontal bar. Over
the 20 stimulus iterations, the mean attentional activity of
locations corresponding to the stimulus was computed. I assume
that recognition accuracy is related to the attentional activity
that accumulates while the stimulus is present. The attentional
activity was computed by first calculating the mean activity of
stimulus locations in each column and then calculating the
mean across columns. This measure gave a better sense of how
far the attentional activation had spread in a left–right direction
than a direct average across locations. However, both measures
yielded the same results.
The simulation showed the same qualitative pattern of per-

formance as that of the human subjects.7 For the normal model,
activation of the stimulus following an LC cue was greater than
that following a left or right cue: LC versus left, F(1,
396) ' 23.2, p & .001, and LC versus right, F(1, 396) ' 23.2,
p & .001; however, left and right cues obtained the same
activation, F(1, 396) & 1; for the lesioned model, activation of
the stimulus following an LC cue was less than that when
following a left cue, F(1, 396) ' 1,758, p & .001, and was
greater than that when following a right cue, F(1, 396) ' 4,098,
p & .001. One gains an intuition about these results when
examining typical activation patterns for the unlesioned and
lesioned model, with both left and LC cues (see Figure 17).
When a cue is first presented, the cue location becomes active.
To a first approximation, when the shape appears, activation
spills out from the cue location to the remaining locations of the
shape. The “spilling” is due to the cooperation rule: A location
becomes activated more readily if its neighbors are already
active. For the unlesioned model, when the cue is at the center
of the object, the tide of activation has an equal number of
locations to cover to the cue’s left and right, allowing for an
efficient parallel propagation of activation. When the cue is to
the left or right, however, activation has further to travel before
it reaches the shape’s extremities. This asymmetry results in
less attentional activation for left and right cues than for the LC
cue.
For the lesioned model, a different asymmetry comes into play:

To a degree, attentional activation must spread from the cue
location to other locations of the object (the cooperation rule), but
the weaker exogenous input to the left of the cue causes the
activation to travel more readily to the right than to the left. Cuing
to the left appears to partly compensate for this asymmetry, re-
sulting in the most rapid rise of activation for left cues.
Cuing effects arise in the simulation not because of interference

or facilitation in constructing an object-based representation but
because of attentional dynamics in a viewer-based frame. Driver

and Pouget (2000) also argued that the Pavlovskaya et al. (1997)
data can be explained without recourse to object-based frames.
Their argument is completely consistent with the AM’s account,
although the AM adds to the story by providing a working com-
putational mechanism that removes all doubt about the plausibility
of the explanation, by modeling normal as well as patient perfor-
mance and by avoiding assumptions specific to the Pavlovskaya et
al. paradigm (e.g., one of Driver & Pouget’s accounts assumes that
accuracy is dependent on the balance of neural response over left
and right sides of a stimulus).

Arguin and Bub (1993)

Several studies have been conducted to try to disentangle the
contributions of various frames of reference to neglect by manipulat-
ing the location of a target in one reference frame while keeping it
fixed in another (e.g., Behrmann & Moscovitch, 1994; Calvanio,
Petrone, & Levine, 1987; Farah, Brunn,Wong,Wallace, & Carpenter,
1990). Arguin and Bub (1993) performed such a study in which the

7 Although Figure 16 does not appear to show a precise quantitative fit
to the data, one should not be concerned. First, the mapping from atten-
tional activation to recognition accuracy need not be linear. If the mapping
curve has a positive acceleration, small differences for higher mean activ-
ities will be amplified and the fit will improve. Second, little or no attempt
was made to adjust the stimulus representation and timing of a trial to
achieve an exact fit.

Figure 15. Sample shape used in Pavlovskaya et al. (1997) and the
locations of the three different cue types.

Figure 16. Human (top panels) and simulation (bottom panels) data
from the Pavlovskaya et al. (1997) study, both for individuals with and
without neglect. The human and simulation data show an excellent
qualitative match. The error bars for the simulation indicate one stan-
dard error of the mean. LC ' luminance centroid; AM ' attentional
mechanism.
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two frames were viewer based and object based.8 Subjects were asked
to name a target letter presented in a horizontal array containing four
elements. The other three elements were filled circles. The target
could appear in one of eight positions on the screen, called the
viewer-relative position. The target could also appear in one of four
positions relative to the circles, called the object-relative position.
Viewer-relative and object-relative positions were varied indepen-
dently, producing 32 different display configurations (see Figure 18).

Response time to name the target was measured. Arguin and Bub
viewed response time as a “direct measure of allocation of attention
across space” (p. 350): The more attention allocated to a position, the
faster the response time. This paradigm allows for the comparison of
performance across object-relative position when the viewer-relative
position is held constant.
Whereas subjects with no brain damage showed no effect of

object-relative position, patient B.A., with neglect, showed in-

Figure 17. Typical activation patterns on trials of the normal and lesioned model, with luminance centroid
(LC) and left cues.

Figure 18. Each rectangle, containing a letter and three filled circles,
depicts a possible stimulus display in the Arguin and Bub (1993) study.
The fixation point is indicated by the plus sign. In the top two and the
middle rectangles, the position of the letter is varied with respect to the
viewer-based frame, whereas the position is fixed with respect to the
object-based frame. In the middle and the bottom two rectangles, the
position of the letter is varied with respect to the object-based frame,
whereas the position is fixed with respect to the viewer-based frame.

8 Arguin and Bub (1993) distinguished object-based frames from stimulus-
based frames. An object-based frame “depicts the spatial relations between the
parts of a single object,” whereas a stimulus-based frame “represents the
relative locations of spatially distinct stimuli” (Arguin & Bub, 1993, p. 350).
I see no clear-cut distinction between these two situations. Many objects can
be drawn in a way that their parts are not physically connected (e.g., the word
DOG). If one accepts a hierarchical organization of objects and their parts,
there is in principle no distinction between objects and stimuli because a
stimulus at one level of the hierarchy (made up of multiple objects) is an object
at the next level up the hierarchy. Until some compelling evidence is presented
for a dissociation of object-based and stimulus-based frames of reference, I
argue the two terms should be treated as equivalent. Even if the two frames are
dissociated, the simulation to be reported is still of value: Arguin and Bub
argued for the psychological reality of stimulus-based frames based on their
data, but the present simulation replicates the pattern of data without either a
stimulus-based or an object-based level of representation.
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creasing response time with leftward target displacement in the
array. Because an effect of object-relative position was obtained
when unconfounded with viewer-relative position, the data were
interpreted as supporting the hypothesis that neglect can occur
with respect to an object-based frame of reference.
In my simulation of this experiment, each display element was

mapped to a 4 ! 3 pattern of exogenous input to the AM, with a
one-column gap between display elements. Because the target
could appear in eight different viewer-centered locations, and it
was necessary to allow for three additional display elements to the
left and right of the target, the topographic map was designed to
accommodate 14 distinct locations. Figure 19 shows an example of
the lesioned model’s performance. As the figure illustrates, the
exogenous input tends to be weaker for the elements further to the
left. However, because the stimulus display is on the left side of
the viewer-centered frame, the exogenous input is degraded even
for the rightmost element. Although all four elements capture
attention on this trial, attention builds most rapidly for the right-
most elements, suggesting that the readout activity (the mean
attentional activity over the 20 iterations following stimulus onset)
should be larger for the rightmost elements and, hence, response
time should be faster. This observation was confirmed by run-
ning 14 presentations of the complete experimental design (32 trial
types).
The simulation data are summarized in Figure 20. For the

unlesioned model, no effect was found for either object- or viewer-
relative position: object, F(3, 416) & 1; viewer, F(7, 416) ' 1.1,
p ) .3. For the lesioned model, however, main effects were
obtained for both object- and viewer-relative position: object, F(3,
416) ' 80.8, p & .001; viewer, F(7, 416) ' 109.9, p & .001, and
there was no interaction, F(21, 416) ' 1.14, p ) .3. These results
replicated the main findings of Arguin and Bub (1993). The only
significant discrepancy between the human and simulation data is

that Arguin and Bub observed effects of retinal eccentricity that
influenced performance as a function of viewer-relative position.
The model obviously does not address retinal acuity effects, be-
cause its visual field is homogeneous. However, such effects could
readily be incorporated by, for example, assuming readout time
that increases with distance from fixation.
How can it be that the model has only a viewer-based represen-

tation, yet its performance is affected by the object-relative posi-
tion of a target? The story depends on two factors. First, the
attentional gradient causes exogenous input from the relative left
of a stimulus to be weaker than exogenous input from the relative
right (the bias rule), regardless of the absolute position of the
stimulus. Second, attentional activation initially depends on the
strength of the exogenous input, but then competition comes into
play and the relatively stronger locations suppress the relatively
weaker locations. Suppression of the leftmost elements by the
rightmost elements was also evident in the Behrmann and Tipper
(1994) simulation (see Figure 10), where only the right half of the
barbell was attended, even prior to the onset of rotation. The
suppression does not occur in the normal model because the
exogenous input to the left and right elements is balanced; conse-
quently, their support is roughly equal, and competition does not
come into play.
Central to this account is the fact that competition arises only

from active locations, making the key consideration in the deter-
mination of the activation of an attentional unit its viewer-based
horizontal location with respect to other locations where features
are present, not its location with respect to the retina as a whole.
The idea of relative neglect arising from an attentional gradient has
been proposed previously (e.g., Driver, 1999; Kinsbourne, 1993;
Pouget & Sejnowski, 1997). However, the AM explains how this
idea, in the context of a dynamical system, can give rise to the
detailed properties of patient performance.

Figure 19. Performance of the (a) unlesioned and (b) lesioned model when presented with a sample display
from the Arguin and Bub (1993) study.
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Mozer and Behrmann (1992) modeled effects of object-relative
position in a reading task with the lesioned AM similar to those
found in the present simulation. However, the effect of viewer-
relative position on performance is somewhat dependent on the
task and the specific readout assumptions. For example, when
Mozer et al. (1997) simulated line bisection using the lesioned
AM, they found only weak viewer-relative effects when response
formulation was assumed to depend on the asymptotic activity of
the AM.

Driver and Halligan (1991)

Like Arguin and Bub (1993), Driver and Halligan (1991) stud-
ied a task that involved independently manipulating the location of
a target in viewer-based and object-based frames. The task in-
volved detecting whether a pair of nonsense shapes differed in a
subtle detail. A sample shape is shown in Figure 21a. The shapes
were vertically elongated and relatively bottom heavy, two cues
that would suggest an unequivocal principal (up–down) axis.
When presented upright and aligned with the patient’s sagittal
midline, the viewer-centered and object-centered frames are con-
founded. However, when the shapes are presented at an orientation
of 45°, the two frames can be dissociated. In Figure 21b, the detail
labeled L appears on the object left but the viewer right, and the

detail labeled R appears on the object right but the viewer left.
Driver and Halligan observed an object-based effect: Details on
the left side of a shape were more often neglected than details on
the right side, regardless of whether the detail appeared to the left
or right of the sagittal midline, suggesting that neglect can operate
in coordinates defined relative to the principal axis of a shape.
The critical trials of the Driver and Halligan (1991) experiment

were those in which the pair of nonsense shapes differed in some
detail. Eight shapes were used to form these displays. Each shape
was used in one upright and one diagonally oriented display, and in
mirror images of these displays, resulting in a total of 32 critical trials.
My simulation used the same eight shapes and 32 critical trials.

For each trial, I presented a single shape, with the detail present.
The shapes drawn by Driver and Halligan (1991) were composed
on a 10 ! 5 grid, and each grid cell was translated to a 2 ! 2
region of activity on the topographic map. The activity pattern for
the shape in Figure 21a is shown in Figure 22a; activity is en-
hanced around the contour of the shape as in all other simulations.
To generate the shapes at a diagonal orientation, I designed an
activity pattern for the upright shape and then rotated it on the grid
45° clockwise or counterclockwise using the same algorithm as the
rotation of the barbell in the Behrmann and Tipper (1994) simu-
lation. (The rotation was a mathematical operation to map pixels in

Figure 20. Simulation performance of the unlesioned and lesioned attentional mechanism (AM) on the Arguin
and Bub (1993) task. The error bars indicate one standard error of the mean.

Figure 21. Example of an elongated nonsense shape used by Driver and Halligan (1991). (a) When the shape
is presented upright, the viewer-based and object-based frames are in alignment. (b) At an orientation of 45°, the
frames are dissociated. The detail labeled L appears on the object left but the viewer right. The detail labeled R
appears on the object right but the viewer left. (c) At the other diagonal orientation, the two frames are again in
alignment as in (a). From “Can Visual Neglect Operate in Object-Centered Coordinates? An Affirmative
Single-Case Study,” by J. Driver and P. W. Halligan, 1991, Cognitive Neuropsychology, 8, p. 481, Figure 2.
Copyright 1991 by Psychology Press. Adapted by permission of Psychology Press, Ltd., Hove, UK.
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the upright shape to pixels in the diagonal shape. It was not part of
the simulation; that is, the model was presented with a static
stimulus at a diagonal orientation; it did not view the stimulus as
it was rotated into position.) Sample exogenous input to the le-
sioned model for the shape in Figure 21b is presented in Fig-
ure 22b. The AM was allowed to settle for 100 iterations, and then
the readout activity was determined at the locations corresponding
to the detail. I assume that readout activity is monotonically related
to the likelihood of noticing the detail. Figure 22c depicts the final
state of the lesioned AM. Although the difference is not com-
pletely apparent in the figure, the readout activity of details L and
R on this trial was .48 and .79, respectively.
The critical trials fall into four conditions, determined by cross-

ing the side of the shape on which the detail appears with the side
of the viewer on which the detail appears. In the Driver and
Halligan (1991) experiment, the two conditions in which the detail
appeared on the same side of the two reference frames were
studied using upright shapes (e.g., Figure 21a). I chose instead to
use shapes oriented at 45° from upright in either a clockwise or
counterclockwise direction such that the relevant detail appeared
on the same side of both the viewer-based and object-based frames
(e.g., Figure 21c). I made this decision after observing that the
unlesioned model produced significantly higher readout activity
for upright shapes than for diagonal shapes, because of the coarse
resolution of the topographic map and quantization effects in the
diagonal displays. The stimulus in Figure 21c allows one to test the
same conditions as the stimulus in Figure 21a but is a better
matched control to the stimulus in Figure 21b.
The simulation involved 10 replications of each critical trial. An

analysis of variance performed using the stimulus as the random
factor revealed a main effect of object-relative position (object-left
details had a readout activity value of .57; object-right details had
a readout activity value of .67), F(1, 7)' 6.07, p& .05, and a main
effect of viewer-relative position (viewer-left details had a readout
activity value of .43; viewer-right details had a readout activity
value of .80), F(1, 7)' 51.00, p & .001, but the interaction did not
reach significance, F(1, 7) ' 1.6, p ' .24. Most important,
regardless of whether the detail appeared on the left or the right
with respect to the viewer-based frame, the readout activity was
higher for details on the right side of the shape than on the left side
of the shape. Thus, the model replicated the key finding from the
patient data.
The simulation and the patient data did not match in that viewer

position had the larger effect in the simulation, whereas object

position had the larger effect in the patient data. However, the
human data was from a single patient, and the simulation data
assumed a specific lesion. One should therefore not expect an
exact match between the simulation and the patient, just as one
would not expect an exact match between the data from two
different patients. Nonetheless, the model did replicate the key
result that suggested to Driver and Halligan (1991) the role of
object-based reference frames.9
Driver et al. (1994) explained how effects of within-object

position could arise from viewer-based frames of reference. I
summarize their explanation, because it serves as a helpful lead-in
to the explanation suggested by the AM. If one traces a horizontal
path in the viewer-based frame intersecting detail L in Figure 21b,
detail L always appears to the left of other shape information along
this path and, similarly, detail R always appears to the right of
other shape information along a horizontal path intersecting it.
Thus, the viewer-based and object-based frames have not been
completely unconfounded, and the advantage for detail R over
detail L could be explained by neglect for information that appears
on the relative left in the viewer-based frame—that is, information
whose viewer-based horizontal position is on the left relative to
other information with the same viewer-based vertical position.
The AM suggested essentially this relative neglect explanation for
the Arguin and Bub (1993) data. Although the AM does not use
competition between left and right along a horizontal path—
competition in the AM is global, that is, between every pair of
locations—the simple account was adequate because the Arguin
and Bub stimuli extended primarily in the horizontal direction.
However, the explanation requires some elaboration for the Driver
and Halligan (1991) stimuli, which extend nonuniformly in the
vertical direction and therefore cannot be treated as a one-
dimensional shape. The explanation for the Driver and Halligan
stimuli is based on the observation that along every horizontal
path, the strength of exogenous input to the AM on the right is
stronger than on the left. Although competition is global, cooper-
ation is local; the features along the right edge of the shape are
neighbors and hence are mutually supportive as are the features on
the left. A gang effect emerges whereby the stronger features on
the right edge support one another and hence—because of com-
petition—become even stronger.
Although relative neglect may qualitatively characterize the

phenomena observed in the Arguin and Bub (1993) and the Driver
and Halligan (1991) data, the AM offers a deeper explanation with
greater predictive power. Relative neglect arises in the AM due to
an interaction between the competition and cooperation rules and
the specific pattern of exogenous input provided by the bias rule.
It is even conceivable that for some configurations of visual
features in a display, the balance of competition and cooperation

9 The larger effect of viewer position in the model is responsible for
another discrepancy between the model and patient performance: The
patient made fewer errors when the detail was object-right/viewer-left than
when the detail was object-left/viewer-right (14 vs. 23 errors on 32 trials,
respectively). However, the importance of this comparison is questionable,
for the reasons explained in the text, and because Driver and Halligan
(1991) did not report the statistical significance of the comparison. Rather,
they reported only chi-square tests for the main effects of viewer position
and object position, and their significance results matched those of the
model.

Figure 22. (a) Exogenous input to the unlesioned model for an upright
Driver and Halligan (1991) nonsense shape (see Figure 21a). (b) Exoge-
nous input to the lesioned model for a rotated Driver and Halligan nonsense
shape (see Figure 21b). (c) Asymptotic attentional mechanism state for the
rotated Driver and Halligan nonsense shape.
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may be such that relative neglect is minimized or suppressed.
Thus, the AM suggests that the pattern of neglect will depend not
simply on the count of features to the left or right of some location
but also on the arrangement of features. Such effects have been
observed even for simple bisection tasks (Halligan & Marshall,
1994) and serve to explain the next two experimental results.

Driver et al. (1994)

Because neglect of the relative left in the viewer-based frame
could explain the results of Driver and Halligan (1991) as well as
Arguin and Bub (1993), Driver et al. (1994) explored a task that in
addition controlled for the relative horizontal position of the crit-
ical information, ruling out relative position as a complete expla-
nation for the object-based neglect they observed. They presented
an array of equilateral triangles, and the patient’s task was to detect
a gap in the center triangle. Two different configurations were
studied; in one, the edge in which the gap appeared—the critical
edge—was to the left of midline with respect to the reference
frame established by the array (see Figure 23a; the left condition),
and in the other, the critical edge was to the right of midline (see
Figure 23b; the right condition). In the two conditions, the absolute
and relative horizontal viewer-based position of the critical edge
was identical. The difference between the two conditions can be
described only with respect to the principal axes of the array.
The simulation of this experiment involved presenting each of

the arrays 200 times to the lesioned AM and measuring the mean
activity of locations corresponding to the critical edge over the
first 20 iterations of a trial. Because it was difficult to construct
equilateral triangles given the limited resolution of the AM, the
simulated configurations were tilted slightly, from 60° to 45°, but
this modification did not alter the essential features of the arrays.
Figure 24a shows the exogenous input to the AM for the left
condition; one can readily see the seven triangles.
The readout activity of the critical edge in the left and right

conditions for the lesioned model was .52 and .66, respectively, a
statistically reliable difference, F(1, 199) ' 466, p & .001. Thus,
the AM showed more neglect for the left condition than the
right—just as the patients did—despite the fact that the critical
edge was in the same absolute and relative viewer-based position

in the two conditions, and it had the same number of features to its
left and right in the two conditions. The second and third panels of
Figure 24 present typical AM states on the final iteration for the
left and right conditions, respectively. The critical edge—pointed
to by the gray arrow—had less activation for the left condition
than for the right.
Observing the AM in operation, one gains an insight as to its

behavior. Initially, activity begins to grow around the entire set of
triangles. However, the activity of the left-most triangles rises at a
slower rate, their exogenous input being the weakest, and their
activity is quickly suppressed by the competition from the right-
most triangles (the competition principle). Roughly, one can con-
ceive of the three right-most triangles as the “strong locations” and
the three left-most triangles as the “weak locations.” The critical
edge is closer to the strong locations in the right condition than the
left condition; one can readily see this fact in Figure 23. Because
of the cooperation principle, which causes the spread of activity to
neighboring locations, activation is likely to spill from the strong
locations to the critical edge in the right condition, but this is less
likely to occur, because of the increased distance, in the left
condition.
Driver et al. (1994) suggested that neglect must operate with

respect to the principal axes of the array, although they acknowl-
edged that axis-based neglect might result from an interaction
between object-based and viewer-based factors. This account re-
quires that the principal axes be identified, which is tantamount to
establishing the object-based frame of reference. The AM can
replicate axis-based neglect yet has no explicit representation of
the axes or object-based frame.

Driver and Baylis (1999)

Driver (1999) briefly described a follow-up to the equilateral-
triangle experiment that is troublesome because the explanation I
gave for the AM’s behavior in the equilateral-triangle experiment
fails to predict the outcome of the follow-up study. Although the
follow-up study by Driver and Baylis is unpublished at present, it
seems sufficiently important to the line of argument presented in
this article that I attempted a simulation.
As in the equilateral-triangle experiment, the task involved

detecting a gap in a center triangle. In this experiment, the triangle

Figure 23. Stimuli studied by Driver et al. (1994). The asterisk indicates
the edge on which a gap was to be detected. When the critical edge is
characterized with respect to the principal axis of the object, it is to the left
of the center in (a) but to the right of the center in (b). Adapted from
“Egocentric and Object-Based Visual Neglect,” by J. Driver. In The Hip-
pocampal and Parietal Foundations of Spatial Cognition (p. 82, Figure
4.7), by N. Burgess, K. J. Jeffery, and J. O’Keefe (Eds.), 1999, New York:
Oxford University Press. © Royal Society, 1999. Adapted by permission of
Oxford University Press.

Figure 24. Simulation of the Driver et al. (1994) task of detecting a gap
in the center triangle. (a) Exogenous input for the unlesioned model in the
left condition. (b) State of the lesioned attentional mechanism (AM) at
Iteration 20 in a typical trial of the left condition. (c) State of the lesioned
AM at Iteration 20 in a typical trial of the right condition. In (b) and (c),
the gray arrows point to the triangle edge in which the gap appears. The
critical locations are less active in the left condition than in the right
condition.
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was embedded in a context of isosceles triangles (see Figure 25a).
Symmetry and elongation of the display configuration suggested a
principal axis, indicated in the figure by a dashed line. In the left
condition, the configuration of triangles was such that the critical
edge was left of the principal axis; in the right condition, the
critical edge was right of the principal axis. If neglect occurs with
respect to a reference frame in which the principal axis divides the
object into left and right sides, one would expect patient perfor-
mance in the left condition to be worse than in the right condition.
This is indeed what Driver and Baylis found (no quantitative
results were reported).
Examination of the figure suggests that the AM would predict

exactly the opposite result. In the left condition, the equilateral trian-
gle closer to the critical edge was on the right; in the right condition,
the equilateral triangle closer to the critical edge was on the left. By
the account I gave for the equilateral-triangle experiment, the adjacent
triangle should provide support that spills over to the critical edge, and
because the equilateral triangle on the left should provide less support
than the equilateral triangle on the right, performance should be better
in the left condition than in the right.
My simulation consisted of a 45! 45 retinotopic array designed

such that the shortest distance from a point on the isosceles triangle
to a point on the equilateral triangle was the same for both
isosceles triangles and in both conditions. As in the simulation of
the Driver and Halligan (1991) data, I designed upright triangles
and then rotated them on the grid to achieve the diagonal orien-
tations. (The rotation was a mathematical operation to map pixels
in the upright orientation to pixels in the diagonal orientation; it
was not part of the simulation.) The larger array was necessary to
achieve the necessary symmetries given quantization effects due to
finite resolution of the array.
The simulation of this experiment involved presenting each of

the arrays 200 times to the lesioned AM and measuring the mean
activity of locations corresponding to the critical edge over the
first 20 iterations of a trial. The mean activity was reliably different
in the left and right conditions, .719 and .742, respectively, F(1,
199) ' 182, p & .001. Sample simulation trials are shown in
Figure 26. This result is in accord with the human patient data and
is astonishing because I expected the opposite effect based on the
argument presented earlier. To verify that the result was not due to
an artifact in the stimuli, I simulated the unlesioned AM and

verified that performance was the same in left and right conditions.
To better understand the difference between the left and right
conditions, I superimposed the two stimuli such that the equilateral
triangles in the two conditions were overlaid on one another (see
Figure 25b). One curious difference is that, because the isosceles
triangles were placed the same distance from the equilateral trian-
gle in each condition, the two stimuli had different horizontal
extents: The two isosceles triangles were offset to the viewer left
in the right condition relative to the left condition. This offset can
be seen in the figure by comparing the dashed lines indicating the
left and right extent of the isosceles triangles. The consequence of
this offset was that the exogenous input to the two isosceles
triangles was weaker in the right condition than in the left and,
hence, could result in less competition with the critical edge. This
explanation is probably not the whole story, because even if the
offset were eliminated, a crucial factor distinguished the stimuli in
the two conditions: the horizontal distribution of locations occu-
pied by visual features. If one examines the superimposed image in
Figure 25b, it can be seen that the two isosceles triangles on the
viewer left of the center triangle are mirror reversed along the
horizontal axis. Consequently, in the left condition the tip of the
isosceles triangle was further to the viewer right and the base was
further to the viewer left. Because the isosceles triangles had
nonhomogeneities—for example, the density and mass of features
near the tip were greater than near the base—one should expect the
distribution of features in the triangles, when modulated by the
gradient of attention, to influence competition in the model.10
The two factors distinguishing left and right conditions that I

identified both contributed to the activation of the locations of the
two isosceles triangles being lower in the right condition than in
the left: .51 and .75 for the two isosceles triangles in the right
condition versus .60 and .77 in the left. Less activation of the
isosceles triangles means less competition for the equilateral tri-
angle and more activation of the critical edge. If weaker compe-
tition was the cause of the higher activation in the right condition,
then the proximity of the isosceles triangles to the equilateral
triangle should not matter, because the offset will be present for
any fixed separation of the triangles, and inhibition in the model is
global and does not depend on local configurations of features.
Indeed, in displays with greater space between triangles, the right
condition still results in more activation than the left, consistent
with my hypothesized explanation.
My goal in the preceding paragraph was to offer several factors

that distinguish the left and right conditions and that are salient to
a model such as the AM but that have nothing to do with the
claimed distinction—the location of the critical edge with respect
to the principal axis. The AM once again points to the challenge of
designing carefully controlled stimulus displays that admit only

10 To alleviate any concern that my explanations of the isosceles-triangle
and equilateral-triangle studies are inconsistent with one another, note that
the distribution of visual locations in the equilateral-triangle study was the
same in left and right conditions. Hence, the factor I identified as critical
in the isosceles-triangle study is irrelevant in the equilateral-triangle study.
And although the factor I identified as critical in the equilateral-triangle
experiment—the local neighborhood around the critical edge—could have
played a role in the isosceles-triangle experiment, it can be speculated that
it was not as significant a factor as the distribution of visual locations
containing features.

Figure 25. (a) Stimuli studied by Driver and Baylis (1999, as cited in
Driver, 1999). The task is to detect a possible gap in the center triangle,
which appears in the location indicated by the asterisk. Depending on the
configuration of triangles, the gap will appear either left or right of the
principal axis, indicated by the dashed line. (b) An image of the two stimuli
superimposed such that the equilateral triangles are overlaid on one an-
other. The dashed lines indicate the left and right edges of the two pairs of
isosceles triangles. Adapted from “Egocentric and Object-Based Visual
Neglect,” by J. Driver. In The Hippocampal and Parietal Foundations of
Spatial Cognition (p. 82, Figure 4.7), by N. Burgess, K. J. Jeffery, and J.
O’Keefe (Eds.), 1999, New York: Oxford University Press. © Royal
Society, 1999. Adapted by permission of Oxford University Press.
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one explanation for a patient’s performance: the psychological
reality of object-based frames.

Discussion

The neuropsychological studies I addressed are concerned with
the issues of what internal representations are constructed in the
ordinary course of visual information processing and whether
attention can be directed in coordinates defined by the object itself.
In one study, Behrmann and Tipper (1994) observed that neglect
remained with the left side of an object when the object was
inverted. However, this reversal of neglect was not observed for
displays in which the left and right sides of the object were
disconnected (Tipper & Behrmann, 1996) or for additional, fixed
objects in the display (Behrmann & Tipper, 1999). Pavlovskaya et
al. (1997) improved accuracy of object identification by cuing
patients to a location left of the center of the object. Arguin and
Bub (1993) found reaction times longer for a stimulus located on
the left side of an object than the right side, controlling for retinal
position of the stimulus. In two different paradigms, Driver and
Halligan (1991), Driver et al. (1994), and Driver and Baylis (1999)
observed neglect operating with respect to the principal axis of an
object. These results were interpreted by the authors of the studies
to support the psychological reality of a frame of reference other
than the viewer-based frame:

The findings suggest that attention operates on object-centered as well
as location-based representations, and thus accesses multiple refer-
ence frames. (Tipper & Behrmann, 1996, p. 1261)

Patients with visual neglect . . . represent information in both
location- and object-centered frames simultaneously in the same task
. . . . These results cannot be explained by any model of attention that
argues solely for a location-based medium. . . . Rather, the current
findings can only be explained by assuming that the positions of the
targets are defined with respect to particular frames of reference, and
that spatial position (and neglect thereof) is determined with respect to
these frames. (Behrmann & Tipper, 1999, pp. 94–95)

Our data might be interpreted in terms of neglect operating in the
object-centered coordinate frame. (Pavlovskaya et al., 1997, p. 828)

A stimulus-centered spatial reference frame . . . may be affected in the
visual hemineglect syndrome. . . . Thus, we suggest that the concept
of stimulus-centered reference frame corresponds to a level of spatial
representation that is generally used in human vision. (Arguin & Bub,
1993, p. 354)

Our results imply that [patient] PP’s stroke has damaged neural
systems which normally code visual information in . . . object-centred
co-ordinates. (Driver & Halligan, 1991, p. 489)

A purely egocentric neglect is unable to explain the present axis-based
result. . . . [O]ur experiment shows . . . that the dividing line between
neglected and spared sides . . . can be determined by the principal axis
assigned to a shape during perception. (Driver et al., 1994, p. 1362)

Although the authors were careful to state their conclusions ten-
tatively, the accumulation of such studies has led to widespread
acceptance of the psychological reality of object-based frames of
reference in visual object recognition. Because the existence of
object-based frames is a fundamental source of evidence support-
ing certain structural-description theories of object recognition
(Biederman, 1987; Marr, 1982), these theories are generally
viewed as canonical in the cognitive neuroscience community
(e.g., Caramazza & Hillis, 1990a) and provide a motivation, often
implicit, for experimental work (e.g., the studies analyzed here).
Contrary to the predominant view in cognitive neuropsychol-

ogy, the simulations reported in this article suggest that object-
based frames of reference are not necessary to explain the neglect
data. The present model can account for the data yet operates only
in a viewer-based frame.11 Consequently, one must be cautious in
interpreting even seemingly clear-cut experimental results without
the aid of a computational model.

11 Further, the model can readily explain other neglect data that have
been used in support of, or that have presupposed the existence of,
object-based frames, such as in Grabowecky, Robertson, and Treisman
(1993), as well as data showing neglectlike object-based attentional biases
in nonpatient populations, such as in Reuter-Lorenz, Drain, and Hardy-
Morais (1996). The explanation of the Arguin and Bub (1993) data can be
applied to these cases as well.

Figure 26. Simulation of the Driver and Baylis (1999) task of detecting a gap in the center triangle. Each frame
shows the state of the lesioned attentional mechanism after a given number of iterations in typical trials of the
left and right conditions (upper and lower frames, respectively).
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Evaluating the Model

Computational modeling is a valuable exercise for many rea-
sons. A computational model provides a concrete embodiment of
a theory. It forces one to be explicit about one’s claims. It allows
one to examine interactions among assumptions. However, a com-
putational model makes its greatest contribution when it offers a
new or fundamentally different conceptualization of data. The
model described here, the AM, has succeeded in this regard. The
neglect data seemed to demand an explanation involving object-
based frames. No qualitative model could convincingly argue
otherwise; only a simulation model could resurrect a class of
explanations that would otherwise be ruled out. Even if the internal
dynamics of the AM were incomprehensible to human observers,
it would still provide an existence proof—a detailed model having
only viewer-based frames that can nonetheless explain the data.
The inner workings of the AM are indeed difficult to compre-

hend. I am sometimes successful in explaining its behavior in
qualitative language that can be communicated to others, but not
always. The model’s behavior is an emergent property of the
interaction of cooperative and competitive forces. One should not
expect that such complex dynamics can be reduced to a simple
explanation that sidesteps the dynamics. To the degree that I have
succeeded in characterizing the model’s performance, the charac-
terizations come by means of post hoc analysis of the simulation
results.
Indeed, the AM has sufficiently complex dynamics that its

creator has difficulty in predicting the outcome of a simulation.
Many results I have modeled using the AM were unexpected and
surprising. In the simulations reported here, the disconnected disk
condition of Tipper and Behrmann (1996) and Driver et al. (1994)
are two cases in point. The model is far more interesting and subtle
than I first realized. However, its success in explaining a wide
variety of data is undeniable. Each time that the model, with only
trivial extensions, can explain a diverse corpus of data it was not
designed around, one must increase one’s confidence in the model.
A relatively simple model such as the AM could not continue to
provide accounts of data were it not in some basic sense correct.
As the careful reader has no doubt noticed, the AM sometimes

produces curious behaviors that might have a correlate in patient
behavior. I list three examples from the Behrmann and Tipper
(1994; Tipper & Behrmann, 1996) simulations. (a) The AM pro-
duces a reversal of neglect in the barbell displays even if the center
portion of the bar is missing (see Figure 12, lower-right panel); (b)
when the barbell has been rotated 180°, there appears to be some
asymmetry in the distribution of attention to the disk on the viewer
left, suggesting that patient reaction times might be faster to a
target on the right side of the disk than on the left (see Figure 10,
lower-right panel); and (c) in the disconnected disk condition,
there appears to be a short period of time during which both disks
are attended (see Figure 11), suggesting that if the target appeared
at the critical instant, reaction times might be comparable for the
two disks.
My colleagues and I are currently testing patients on these and

other experimental tasks in which contrasting predictions are made
by the AM and an account relying on object-based reference
frames (McGoldrick, Mozer, Munakata, & Reed, 2001). One nat-
ural reaction to the present simulation studies is that the value of
the model cannot be ascertained until the model can be shown to

predict the results of novel experiments. However, this reaction is
misguided, because in fact the present simulation studies already
represent predictions of the model. One should not be concerned
with whether the experimental data explained by the model existed
in the literature prior to the simulation. Rather, the essential
considerations in evaluating the predictive power of a model on an
experiment are whether the model was designed with the experi-
mental data in mind and whether the model had sufficient degrees
of freedom that it could provide an interpretation for any outcome
of the experiment. Neither concern is warranted in this case. Thus,
in response to the question of whether the AM has any predictive
power, the simple answer is that all of the results reported here are
predictions of an existing, highly constrained computational
model. Even if it turns out that further predictions of the model are
not supported by patient studies, the model has been valuable in
pointing out alternative explanations for each study simulated, and
these alternative explanations could be correct even if the model is
ultimately proven inadequate.

An Alternative Model

Recently, Pouget and Sejnowski (1997) and Pouget, Deneve,
and Sejnowski (1999) have proposed a neurobiological model of
spatial representations in parietal cortex and have used the model
to explain data from the neglect literature, including phenomena
that have been modeled by the AM such as line bisection and
relative neglect. I view this model, which I refer to hereinafter as
the basis-function model, as being consistent with and complemen-
tary to the AM, focusing on the neurobiological level of descrip-
tion rather than the psychological level. The heart of the basis-
function model is the claim that neurons in the parietal cortex are
tuned to respond to a stimulus appearing at a specific retinal
location and this response is gain modulated by eye position. The
model is referred to as a basis-function model because the repre-
sentation supports both eye-centered and head-centered represen-
tations—the former useful for saccadic eye movements and the
latter useful for reaching.
The model has two hemispheres, and although neurons in each

hemisphere encode all of space, the representation in a hemisphere
emphasizes the contralesional side of space. Specifically, a neu-
ronal gradient is assumed in which the right hemisphere contains
relatively many neurons coding for leftward retinal locations and
leftward eye positions and relatively few neurons coding for right-
ward retinal locations and rightward eye positions. Consequently,
a lesion to the right hemisphere results in a gradient of damage to
the representation of space, most severe on the left and least severe
on the right. This gradient assumption is the same as that postu-
lated by the AM.
Beyond its claims about parietal representations, the basis-

function model makes some fairly standard assumptions about the
nature of attention, including a winner-take-all competition among
locations, inhibition of return, and detection accuracy and speed
being dependent on the saliency of a location. These processes are
described at an abstract level, not in terms of neural mechanisms.
Although I view the AM and the basis-function model as being

entirely consistent, the basis-function model has some virtues.
First, the model makes contact with the underlying neurobiology.
Second, the model deals with sensorimotor behavior as well as
perception. Third, the model addresses the specific nature of the
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viewer-based representation in terms of both eye-centered and
head-centered coordinate frames. Fourth, the model shows that
with little more than the gradient assumption, one can explain
some of the data concerning relative neglect; the complex dynam-
ics of the AM are not essential.
The basis-function model also has its limitations. First, the

central claims of the model concern the representation of space,
but additional claims are required about the processes that operate
on the representation in order to extract responses from the model.
Consequently, the model lacks a uniform mechanistic foundation
to explain data from diverse experimental paradigms; hence, each
new experimental paradigm seems to require additional assump-
tions, and the ratio of assumptions to data explained seems high
relative to that of the AM. Second, although the basis-function
model can explain some if not all cases of relative neglect (e.g.,
Arguin & Bub, 1993) without explicit object-based frames, it does
not provide an explanation for the challenging studies of Behr-
mann and Tipper (1994, 1999; Tipper & Behrmann, 1996), nor
does it provide an explanation of the Driver et al. (1994) gap-
detection study without invoking object-based frames.12 The com-
plex dynamics of the AM are what give it the power to explain
these phenomena.
Rather than viewing one model or the other as superior, I feel it

is quite plausible that the strengths of the basis-function model and
the AM can be integrated into a single model that accounts for an
even broader range of behavioral and neurophysiological data with
even fewer assumptions than either of the current models.

The Meaning of Object Based

The phrase object based is ambiguous, and a lack of clarity as
to its intended meaning has resulted in some confusion in the
literature. Object based can be a descriptive term for experimental
results. All of the simulations of experimental studies reported in
this article showed object-based effects, in that the behavior of
patients was dependent not merely on the location of an object
with respect to the viewer but on the extent, shape, or movement
of the object itself. Object based can also be a characterization of
processes and internal representations. Object-based representa-
tions arise from processes that use object-based frames of refer-
ence to transform visual features to achieve partial or complete
view invariance. The simulations reported here show that object-
based effects can be obtained without object-based representations
or frames of reference.
The distinction between object-based effects and object-based

representations does not entirely remove the ambiguity in the
phrase object based. One can conceive of a continuum of senses in
which a model’s processes and representations might be consid-
ered object based. Examples of at least four alternatives can be
found in the literature, which I present in order from weakest to
strongest notions of object based. (See Driver, 1999, for a similar
enumeration of alternatives.)
1. Segmentation in a viewer-based frame (Grossberg &

Raizada, 2000; Mozer et al., 1992; Vecera & Farah, 1994). Some
models attempt to perform segmentation, that is, grouping together
the visual features that belong to one object. Segmentation can be
performed in a viewer-based reference frame using grouping heu-
ristics that exploit the statistics of objects in visual scenes. For
example, the cooperation rule of the AM results in grouping of

neighboring locations in a viewer-based frame, but because neigh-
boring locations in a viewer-based frame tend to be neighboring
locations in an object-based frame, the AM tends to select objects.
If other grouping heuristics were incorporated into the AM, as I
suggested earlier might be necessary in a full-blown implementa-
tion of the model, then the AM’s behavior would appear even more
object based (and more like the model of Mozer et al., 1992).
2. Segmentation and determination of principal axis (Driver,

1999). In addition to performing segmentation in a viewer-based
frame, a model might also determine the principal axis of an
object—the axis of symmetry or elongation. Using the axis to
establish a partial frame of reference—such as an up–down direc-
tion—visual features could be reinterpreted with respect to the
partial frame. For example, Driver et al. (1994) suggested that the
shape in Figure 23a evokes a principal axis from which the midline
of the shape can be determined, and the left–right position of visual
features is then determined with respect to the midline, although
the specification of which direction is “left” and which is “right”
arises from the viewer-based frame (Driver, 1999).
3. Segmentation and determination of an object-based frame of

reference (Marr & Nishihara, 1978). A model might determine not
only the up–down direction of an object but also its left–right and
front–back direction, allowing for the establishment of a full-
blown object-based frame of reference.
4. Segmentation and determination of a structural description

(Biederman, 1987). To handle complex, articulated objects, a
model might construct a structural description that decomposed an
object to its parts and described the relationships among the parts
in terms of multiple allocentric frames of reference.
Alternative 3 is the common notion of object based in the

cognitive neuropsychology literature, although Driver (1999) ar-
gued that Alternative 2 is sufficient to explain key neglect data.
The AM is an example of Alternative 1. Indeed, it is a simple
formulation of Alternative 1, in that segmentation depends only on
the proximity of features, although I am ready to concede that a
more complex formulation, still within the framework of Alterna-
tive 1, will be necessary to explain a broader corpus of data.
Alternative 1 provides the weakest notion of object based, in that
it does not require the explicit computation of a principal axis,
frame of reference, or structural decomposition. Because it is
consistent with the data—as demonstrated by simulations of the
AM—it seems to provide the most parsimonious account.
One might ask whether the AM is an object-based account. The

preceding discussion is intended to forestall this question and to argue
that the question itself is indicative of a lack of clarity concerning the
various notions of object based. Clearly, the AM produces ob-
ject-based effects. The AM also has some knowledge, albeit ex-
tremely weak and low order, about objects. However, the question
should not be whether or not a model is object based but rather the

12 Deneve and Pouget (1998) did address the Driver et al. (1994) result,
but to explain the result in terms of the basis-function model, they must
suppose that the orientation of the row of triangles is factored out, that is,
the row of triangles is rotated such that its principal axis is aligned with the
viewer left–right axis. This assumption is consistent with the conclusion of
Driver et al. and essentially involves the establishment of an object-based
frame. In contrast, the AM does not require the determination or the
explicit representation of the principal axis of the row of triangles.
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degree to which it requires the explicit computation of object
properties, such as a principal axis, frame of reference, or struc-
tural description, and the degree to which the data mandate such
computations.

The Status of Object-Based Frames of Reference in
Neglect

Several researchers have noted the need for caution in invoking
object-based frames of reference to explain data from patients with
neglect. Buxbaum (1995), Pouget and Sejnowski (1997), Pouget et
al. (1999), and Driver and Pouget (2000) argued—consistent with
the present work—that apparent object-based deficits in neglect
might arise from attentional gradients in viewer-based space.
Driver et al. (1994) acknowledged that the object-based effects of
Driver and Halligan (1991) might be attributable to a relative
deficit of attention in viewer-based space. Farah (1990; see also
Vecera & Farah, 1994) argued for location-based encoding of
object properties and attributed object-based effects to the fact that
parietal attentional processes are part of an interactive system that
includes other parts of the brain that recognize objects.
Some studies have yielded no or limited support for object-

based frames in neglect. Farah et al. (1990) failed to obtain neglect
in an object-based frame for familiar objects. Behrmann and
Moscovitch (1994) replicated this finding for both objects and
symmetric-letter stimuli but did observe neglect for the intrinsic
left side of asymmetric-letter stimuli. However, the finding for
asymmetric letters may be attributable to their having more com-
plex structure on the right (Drain & Reuter-Lorenz, 1997). Bux-
baum, Coslett, Montgomery, and Farah (1996) eliminated object-
based neglect by manipulating task instructions and suggested that
mental rotation may underlie at least some cases of object-based
neglect.
Two neglect-related phenomena have been reported that are not

immediately explained by the AM and its viewer-based represen-
tation of space. Caramazza and Hillis (1990b; Hillis & Caramazza,
1995) have studied patients who show neglect for the right side of
a word, in both perception and production, across perceptual
modalities, and—most pertinent to the issue of frames of reference
in visual perception—irrespective of the topographic arrangement
of letters (neglect was observed for words whose letters are ar-
ranged in a column or are mirror reversed). Humphreys and
Riddoch (1994, 1995; Riddoch, Humphreys, Luckhurst, Bur-
roughs, & Bateman, 1995) have observed patients who manifest
left neglect in single words but right neglect in multiple-stimulus
displays. These phenomena, though undoubtedly real, do not nec-
essarily conflict with the perspective I have presented. One might
accommodate these phenomena by positing specialized visual rep-
resentations or processing mechanisms for words versus other
visual stimuli. Driver et al. (1994) noted the role of handedness in
specifying identity of letters and words as one factor that might
make words unique. For the Caramazza and Hillis (1990b) patient,
Driver (1999) commented that neglect is found for letter strings
presented aurally, suggesting a deficit arising at a high level of
representation, not in the visual processing system. One can also
argue that the phenomena implicating object-based representations
arise from a complex interaction of perceptual and motor process-
ing that is both strategic and task dependent, in contrast to the
seemingly more purely perceptual tasks simulated in the present

study (Buxbaum et al., 1996). For example, reading a mirror-
reversed word may involve piecing together the letters one at a
time in a verbal or visual short-term store (Farah & Buxbaum,
1997), and right-sided motor neglect could explain difficulty in
processing multi-item displays via the guidance of eye movements.
Such motor and strategic factors contaminate the interpretation of
patient performance on complex, temporally extended tasks in
terms of perceptual reference frames.13

Other Evidence for Object-Based Frames of Reference?

In this section, I discuss three sources of evidence for object-
based frames in the cognitive neuroscience literature: neurophys-
iological studies, object-based attentional effects in nonpatient
populations and configuration effects.
In an investigation of the neural basis of object-based represen-

tations of space, Olson and Gettner (1995, 1996) trained monkeys
to make saccades to the left or right side of an object and recorded
activity of neurons in the supplementary eye field. They observed
object-based directional sensitivity of neural activity: The response
of certain neurons depended not on the direction of the saccade or
the location to which the saccade was directed but on the side of
the object to which the saccade was directed. These data seem to
support the neurobiological reality of object-based representations.
However, Deneve and Pouget (1998) presented a model that ac-
counts for the data without relying on explicit object-based repre-
sentations. Instead, neurons in the model have receptive fields
defined in eye-centered coordinates, that is, they represent the
direction and amplitude of saccades with respect to the fixation
point and are modulated by task instructions—whether the saccade
is to be directed to the left or right side of the object.
Object-based attentional effects in nonpatient populations (e.g.,

Duncan, 1984; Egly, Driver, & Rafal, 1994; Vecera, 1993) are no
more a source of evidence for object-based frames than are object-
based attentional effects in patients with neglect. Object-based
attentional effects can be readily explained by means of a viewer-
based encoding of object properties (Mozer & Sitton, 1998; Mozer
et al., 1992; Vecera & Farah, 1994).
Configuration effects (Attneave, 1968; Palmer, 1980; Rock,

1997) are an intriguing source of data concerning the role of
object-based frames in perception. Consider the sort of displays
discussed by Mach (1886/1959), shown in Figure 27. The elements
in the configuration on the left are interpreted as squares, whereas
the identical elements appearing in the configuration on the right
are interpreted as diamonds. A natural account of these data, the
principal-axis account, proposes that the principal axis of the
configuration is first identified and the elements are then inter-
preted with respect to the principal axis. Although the use of a

13 Many authors (e.g., Behrmann & Tipper, 1999; Humphreys & Rid-
doch, 1995; Vecera & Farah, 1994) have argued that task contingencies
and instructions can influence whether the allocation of attention is pri-
marily object based or location based. The availability of multiple atten-
tional allocation strategies is pretty much orthogonal to, though consistent
with, the perspective presented in this article because object-based atten-
tional effects can be explained without object-based reference frames.
However, the flexibility of attentional allocation, and strategic effects more
generally, does make it more difficult to conclusively interpret data as
implicating object-based or multiple reference frames in perception.
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principal axis is weaker than establishing a full-blown object-
based frame of reference (see the above discussion of different
notions of object based), it is nonetheless a computation that was
not required by the AM to explain the neglect data. Other data also
support the role of principal axes; for example, Ling and Sanocki
(1995) found that major axes can be primed to facilitate identifi-
cation. Nonetheless, one could conceive of an account that does
not require explicit determination of a principal axis. The account
is in the spirit of models that activate multiple interpretations based
on all sources of evidence and then allow constraint satisfaction to
select a single interpretation (e.g., Kintsch, 1988; Mathis & Mozer,
1996; McClelland, Rumelhart, & Hinton, 1986). By this account,
which I call the construction-integration account following the
terminology of Kintsch, the display elements in Figure 27 would
activate detectors that corresponded to both diamond-at-0°-
orientation and square-at-45°-orientation interpretations. In addi-
tion, for the display on the left, low spatial-frequency detectors
would indicate high energy at 45° in the display. During constraint
satisfaction, the 45°-square and 45°-energy detectors would mu-
tually cooperate, the 0°-diamond and 45°-energy detectors would
compete with one another, and the 45°-square and 0°-diamond
detectors would also compete with one another, resulting in selec-
tion of the 45°-square interpretation of the display elements. The
construction-integration and principal-axis accounts both involve
two stages, but the stages are very different in nature. The elegance
of a construction-integration account comes from the fact that each
stage can be relatively simple, heuristic, and error prone, yet the
result of the computation can be reliable. However, it remains to be
seen through computational modeling whether such an account
will turn out to be more parsimonious and consistent with the data
than a principal-axis account.
In summary, one cannot completely discount the support for

object-based frames of reference from areas of cognitive neuro-
science other than neuropsychology. However, the support seems
weak in that alternative explanations of the data are readily
available.

Conclusions

The simulations presented in this article severely weaken the
argument for object-based frames of reference in visual perception.
The existence of viewer-based frames is indisputable: Early visual
information is encoded with respect to retinal location and gaze
direction. However, the conjecture supported by my computational
model is that object-based frames of reference are not required for
ordinary visual perception. The issue of reference frames is central

because it is one respect in which theories of object recognition
differ. The structural-description theories of Biederman (1987) and
Marr (1982) suppose that object-based frames are used in con-
structing visual representations from which recognition is per-
formed, whereas view-based theories posit that recognition is
performed on visual representations in a viewer-based frame.
On the surface, the neglect data discussed in this article appear

to be striking evidence against view-based theories. Because
object-based frames play no role in view-based theories, the exis-
tence of object-based frames would prove troublesome to view-
based theories. By proposing alternative explanations of the ne-
glect data, the present model provides an account that is
compatible with view-based theories. In the absence of strong
empirical support for object-based frames, either from neuropsy-
chology, behavioral studies using nonpatient populations, or neu-
rophysiological studies, theories of object recognition that posit the
necessity of object-based frames seem doomed.
One should not interpret my line of argument as supporting the

stronger conjecture that object-based frames are nonexistent in the
brain. Surely if demanded by the task, people can mentally con-
struct visual object-based representations. However, the present
model suggests that such a complex cognitive ability is not called
on in the course of ordinary visual perception in naturalistic
environments and is built on top of a more basic perceptual
apparatus that operates using viewer-based frames of reference.
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